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Abstract
The linear calibration model is a powerful statistical tool that can be utilized to pre-
dict an unknown response variable, Y , through observations of a proxy or predictor
variable, X . Since calibration involves estimation of regression model parameters
on the basis of a limited amount of noisy data, an unbiased calibration slope esti-
mation is of utmost importance. This can be achieved by means of state-of-the-art,
data-driven statistical techniques. The present paper shows that weighted least-squares
for both variables estimation (WLSXY) is able to deliver unbiased slope estimations
under heteroscedasticity. In the case of homoscedasticity, besides WLSXY, ordinary
least-squares (OLS) estimation with bias correction (OLSBC) also performs well. For
achieving unbiasedness, it is further necessary to take the correct regression direction
(i.e., of Y on X ) into account. The present paper introduces a pairwise moving block
bootstrap resampling approach for obtaining accurate estimation confidence intervals
(CIs) under real-world climate conditions (i.e., non-Gaussian distributional shapes
and autocorrelations in the noise components). A Monte Carlo simulation experi-
ment confirms the feasibility and validity of this approach. The parameter estimates
and bootstrap replications serve to predict the response with CIs. The methodologi-
cal approach to unbiased calibration is illustrated for a paired time series dataset of
sea-surface temperature and coral oxygen isotopic composition. Fortran software with
implementation of OLSBC and WLSXY accompanies this paper.
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1 Introduction

A proxy is an observable variable, X , that can be utilized to predict an unobservable
variable, Y . An ideal relation for the task of prediction is a mathematical one-to-one
relation between X and Y , where one X value corresponds to one unique Y value,
and vice versa (Kotz et al. 1986, p. 323 therein). The simplest and easiest to interpret
one-to-one relation is a linear model,

Y = β0 + β1 · X , (1)

where β0 and β1 are the intercept and slope parameter, respectively.
Proxy models are widely employed in natural sciences, social sciences, medicine,

and engineering (Cronin 2010;Mahnken et al. 2014; Falcy et al. 2016). The application
in the present paper is from paleoclimatology. Here, natural archives (e.g., marine
sediments or corals) are sampled, and proxy variables (e.g., chemical concentrations
or isotopic compositions) are measured on the samples to predict climate variables
(e.g., precipitation or temperature) back in time—over thousands andmillions of years,
when no devices (e.g., rain gauges or thermometers) were available (Bradley 1999).
Typically for paleoclimatology, but for other application fields as well, the proxy
relation is established for the recent time period, where paired data for X and Y are
available. The determined proxy relation is then called a calibration, and the estimated
calibration parameters (β0 and β1 in the linear case) are taken to predict the response
variable, Y , through observations of the predictor variable, X .

In the real world, however, a perfect calibration model is never realized, since
the calibration data are affected by observational errors (McClelland et al. 2021). In
the case of the paleoclimatic application (Sect. 4), the Y data (temperature) of the
calibration show errors stemming from the imperfect device (thermometer, which
also may not always be available on-site but only somewhere nearby) and the X data
(oxygen isotopic composition) reveal fluctuations due to the counting errors in the
mass spectrometer and other sources (e.g., imperfect standard material used by the
device, biological effects in the sample, or chronological uncertainties of the archive).

Observational error is usually described by a zero-mean stochastic process, and in
climate time series analysis (Mudelsee 2014) it has become practice to decompose the
process into a variability component (possibly dependent on time, T ), such as SX (T ),
which is multiplied by a zero-mean and unit-standard deviation noise process, for
example, Xnoise(T ); the combined error process is then given by SX (T )·Xnoise(T ), and
the time-dependent standard deviation of that process equals SX (T ). If one recognizes
that in practice, the observations are available not at continuous time, T , but rather
at a finite number, n, of time points, T (i), i = 1, . . . , n, and if one further considers
that the response variable, Y , in the calibration period is also made with observational
errors, then one arrives at the real-world (i.e., with noise) linear calibration model,

Y (i) = β0 + β1 · [X(i) − SX (i) · Xnoise(i)] + SY (i) · Ynoise(i). (2)

Here, i is a counter which runs from 1 to n, the size of the bivariate calibration
time series sample {t(i), x(i), y(i)}ni=1, and the discrete notation, such as X(i) for
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X(T (i)), is a handy abbreviation. We note that the temporal spacing, which is given
by [t(i) − t(i − 1)], i = 2, . . . , n, need not be constant. Note also that this paper
follows statistical convention and denotes a theoretical process with a capital letter,
such as X(i), and an observed value with a small letter, such as x(i).

Our statistical task is estimation, namely, to determine β0 and β1 on the basis of
{t(i), x(i), y(i)}ni=1. Since the calibration observations are influenced by errors, the
parameter estimates (̂β0 and ̂β1) are not exactly the same as the true values, and the
“hat” reminds the researcher of that fact. We note that the noise term, SY (i) ·Ynoise(i),
also accommodates proxy errors. For example, in coral paleoclimatology, the predic-
tor variable oxygen isotopic composition may be influenced not only by the desired
response variable sea-surface temperature (SST) but also by other climate variables
such as the oxygen isotopic composition of seawater, a parameter that is closely related
to salinity (Brocas et al. 2019). The problem of predictor noise also plagues climate
modeling. For field reconstructions, two versions of a climate variable (e.g., air tem-
perature) are related to each other: one version is the instrumental measurement, the
other the climate model output. (See, for example, Mann et al. (2007); Ammann et al.
(2010) and Tingley et al. 2012, Sect. 6 therein.)

The calibrationmodel (Eq. 2) is called an errors-in-variables regression, andbecause
there is predictor noise (i.e., SX (i) �= 0), the estimation of the calibration parameters
β0 and β1 is not straightforward (Mudelsee 2014). In particular, ignored predictor
noise may lead to a negative bias of the absolute value of the slope estimate, β1.
This would further mean that in the case of a paleoclimatic coral proxy record, the
inferred temperature amplitudes would be too small. Section2 presents two powerful
(i.e., unbiased) procedures for estimation and prediction; one applies to the situation
of homoscedastic errors (both SX (i) and SY (i) constant), the other to themore difficult
situation of heteroscedastic errors (SX (i) or SY (i) not constant). Section3 introduces a
bootstrap resampling technique that is able to obtain uncertaintymeasures that are also
reliable in the presence of non-Gaussian distributional shapes and autocorrelations in
the noise components Xnoise(i) andYnoise(i)—features that are rather the norm than the
exception in climate sciences (Mudelsee 2014). Section4 illustrates the mathematical
methods for estimation, prediction, and uncertainty determination on paleoclimatic
data from the coral archive. The conclusions (Sect. 5) are directed to the practitioner
who has to find the optimal calibration line in the presence of predictor noise. The
Appendix gives a brief description of the linear calibration software, LINCAL, which
is used to implement the concepts described in the present paper.

2 Estimation and Prediction

An estimation is a mathematical procedure, a recipe, to determine the parameters, β0
and β1, of the errors-in-variables calibration model (Eq. 2) on the basis of a time series
sample, {t(i), x(i), y(i)}ni=1. A prediction is the estimation for a new predictor value,
x(n+1), of the response value, ŷ(n+1), which is achieved by means of the parameter
estimates, ̂β0 and ̂β1, via the formula

ŷ(n + 1) = ̂β0 + ̂β0 · x(n + 1). (3)
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Typically, one uses many x(n + 1) values over a large range to construct a calibration
curve.

For the homoscedastic error type, this paper investigates the ordinary least-squares
(OLS) estimation procedure, which is enhanced by a bias correction (Sect. 2.1). For
the heteroscedastic error type, it employs a weighted estimation procedure, which
allows more accurate data points (i.e., with smaller standard deviation) to contribute
more strongly to the estimation than less accurate data (Sect. 2.2). A crucial point
is that—irrespective of whether there is homo- or heteoroscedasticity—some prior
knowledge about the size of the standard deviation(s), SX (i) and SY (i), has to be
available. The temporal aspect is relevant only for uncertainty determination (Sect. 3),
not for estimation. This means that the estimation procedures presented herein are also
applicable to experimental situations where no time values, t(i), are available. These
four cases—homoscedastic/heteroscedastic errors and availability/unavailability of
time values—are also treated separately in LINCAL software (Appendix). We briefly
mention two other procedures (Sect. 2.3) which are occasionally found in practical
applications. However, both have exhibited poor performance as regards the major
target set in the present paper, namely, the delivery of an unbiased calibration slope.

2.1 Ordinary Least-Squares Estimation with Bias Correction

Assume homoscedasticity, that is, SX (i) = SX is a constant. The simple OLS estima-
tion minimizes the unweighted sum of squares,

SSQ(β0, β1) =
n

∑

i=1

[y(i) − β0 − β1 · x(i)]2 . (4)

This yields the estimators

̂β1,OLS =
{[

n
∑

i=1

x(i)

]

·
[

n
∑

i=1

y(i)

]

/

n −
n

∑

i=1

x(i) · y(i)
}

×
⎧

⎨

⎩

[

n
∑

i=1

x(i)

]2
/

n −
n

∑

i=1

x(i)2

⎫

⎬

⎭

−1

(5)

and

̂β0,OLS =
[

n
∑

i=1

y(i) − ̂β1,OLS

n
∑

i=1

x(i)

]

/

n. (6)

However, if the noise components in the calibration model, Xnoise(i) and Ynoise(i),
are statistically independent—which is typically the case since the observations usually
stem from two independent sources—and also of zero mean and Gaussian shape, then
standard textbooks (Draper and Smith 1981, Sect. 2.14 therein) explain that the slope
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estimator (Eq. 5) is biased downwards as E
(

̂β1
) = κ · β1, where E is the expectation

operator and κ ≤ 1 is the attenuation factor. The latter is given by

κ =
(

1 + S2X
/

VAR [X true(i)]
)−1

, (7)

where VAR is the variance operator, and {X true(i)}ni=1 are the true (but observed only
with error) predictor points. From error propagation (Mudelsee 2014) it follows that
VAR[X(i)] = VAR[X true(i)]+S2X . This, finally, leads to the unbiased slope estimator
and intercept estimator,

̂β1,OLSBC = ̂β1,OLS
/

{

1 − S2X
/

VAR [X(i)]
}

, (8)

and

̂β0,OLSBC =
[

n
∑

i=1

y(i) − ̂β1,OLSBC

n
∑

i=1

x(i)

]

/

n, (9)

respectively. The acronym OLSBC stands for OLS with bias correction. It is evident
that bias correction for the slope (Eq. 8) requires prior knowledge about SX .

2.2 Weighted Least-Squares for BothVariables Estimation

The linear calibration model (Eq. 2) shows that the two noise components can be
combined as SY (i) · Ynoise(i) − β1 · SX (i) · Xnoise(i). This combination hints at the
estimation approach by attaching weights to the observations of both variables (Dem-
ing 1943; Lindley 1947). Over the years, the variant suggested by York (1966) and
others became the standard, namely the minimization of

SSQWXY (β0, β1) =
n

∑

i=1

[y(i) − β0 − β1 · x(i)]2
SY (i)2 + β2

1 · SX (i)2
. (10)

Weabbreviate this estimation procedure asWLSXY.Also, this estimation type requires
prior knowledge, namely about SY (i) and SX (i).

However, WLSXY minimization of SSQWXY (β0, β1) is numerically difficult
because the slope, β1, appears in the denominator of the least-squares sum. The rou-
tine Fitexy (Press et al. 1992) parameterizes the slope as β ′

1 = tan−1(β1), scales the
y(i) values, and uses Brent’s search with a starting value for the slope from an ini-
tial OLS estimation. Other relevant papers were published by Reed (1989, 1992) and
Squire (1990). We follow those authors in the use of WLSXY for estimation, but not
for parameter error determination—for that purpose, bootstrap resampling (Sect. 3) is
employed instead.

123



Mathematical Geosciences

2.3 Other Estimation Procedures

OLS regression (Sect. 2.1) can be geometrically described as a procedure for finding
the best-fit regression line via the minimization of the sum of the squares of the
vertical distances (i.e., in the Y -direction) between data points and the regression line.
OLS estimation can also be applied in the other direction (i.e., of X on Y ), which
would utilize the horizontal distances (i.e., in the X -direction) and yield a different
estimation, as standard textbooks (Davis 1986) explain. Reduced major axis (RMA)
regression can be seen as a compromise between the OLS variants, since it involves
the minimization of the sum of the products of the vertical and horizontal distances
(Davis 1986). The RMA estimators, finally, are

̂β1,RMA = (

SSY
/

SSX
)1/2

, (11)

̂β0,RMA = Ȳ − ̂β1,RMA · X̄ , (12)

where

SSY =
n

∑

i=1

y(i)2 −
[

n
∑

i=1

y(i)

]2
/

n, (13)

SSX =
n

∑

i=1

x(i)2 −
[

n
∑

i=1

x(i)

]2
/

n, (14)

Ȳ =
n

∑

i=1

y(i)
/

n, (15)

and

X̄ =
n

∑

i=1

x(i)
/

n. (16)

Another estimation approach, also geometrically straightforward to understand, is
the Wald–Bartlett (WB) procedure (Mudelsee 2014). The idea is to divide the set of
data points into three groups of the same size according to the size of the x(i) values.
The center for the first group (smallest x(i) values) is given via the respective x(i) and
y(i)means for the group, and analogously for the third group (largest x(i) values). The
line that connects both centers then defines the WB slope estimate. The problem with
the RMA andWB procedures is that they deliver biased estimations for the calibration
slope, β1. This was previously shown in the case of WB (Mudelsee 2014) and will be
seen in the case of RMA (Sect. 3.2).
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3 Uncertainty Determination

In statistical language, the estimated values for the intercept and slope are called point
estimates. In the real world, with limited size of noisy data, the point estimates deviate
from the true values. However, one can measure the typical sizes of such deviations.
Statistical methodology has therefore developed procedures to determine interval esti-
mates, or confidence intervals (CIs) (Robinson 1982), as a type of uncertainty measure
that accompanies an estimate. In fact, a serious interpretation of the significance of an
estimate is difficult to make without an uncertainty measure.

Classical CIs are those that can be derived with pencil and paper. The construction
of classical CIs for the linear errors-in-variables model (Eq. 2) in earlier work (York
1966; Fuller 1987) made a number of assumptions from the following:

1. Gaussian distributional shapes of the noise components, Xnoise(i) and Ynoise(i);
2. absence of autocorrelation in the noise components;
3. absence of correlation between X(i) and Xnoise(i) and between Y (i) and Ynoise(i);

and
4. absence of correlation between Xnoise(i) and Ynoise(i).

Some authors (York 1969; Freedman 1984; Freedman and Peters 1984; Carroll et al.
2006) treat non-Gaussian errors (point 1) and the correlation effects (points 3 and 4).
However, allowance for autocorrelations (point 2) seems to have been made by none,
and this is a crucial issue since climate fluctuations typically exhibit autocorrelation
(memory) besides non-Gaussian shapes.

In the present paper, the interest is in linearly relating two processes, X(i) and Y (i),
and the sample, {t(i), x(i), y(i)}ni=1, may contain the time. Analyses of climate data
by numerous authors document that non-Gaussian distributions and autocorrelation
phenomena are typical of climate processes (see, e.g., Trenberth (1984); Perron and
Sura (2013) and Mudelsee (2014)). We cannot expect the classical method to yield
accurate results (CIs) for climate data. Therefore, this paper presents a computing-
intensive CI construction method that is based on bootstrap resampling (Efron 1979;
Mudelsee 2014). The computational steps are detailed at the algorithmic level (Sect.
3.1).

3.1 Bootstrap Algorithm

The algorithm for CI construction for the estimated errors-in-variables regression
parameters is shown below. Explanations and illustrations for various steps are also
given (Sect. 3.1.1).

3.1.1 Remarks

In step 1, if time values, t(i), are unavailable, then in step 5, set l = 1. In step 3, see
Fig. 1 for the definition of the residuals.

The overall goal of step 5 is to find a block length that is suitable to preserve the
autocorrelation properties of the data-generating process (Künsch 1989). The ordinary
bootstrap (Efron 1979), which generates resampleswith preserved distributional shape
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1. Bivariate time series
{

t(i), x(i), y(i)
}n

i=1

2. Parameter estimates ̂β0, ̂β1
from OLSBC or WLSXY

3. Residuals eX (i), eY (i)

4. Fit values xfit(i) = x(i) − eX (i),

yfit(i) = y(i) − eY (i)
5. Bias-corrected AR(1)

parameters ̂ā′
X , ̂ā′

Y
estimated on residuals,
block length selection l

6. Resampled residuals,

pairwise-MBB with l
{

e∗bX (i), e∗bY (i)
}n

i=1
(b, counter)

7. Resample x∗b(i) = xfit(i) + e∗bX (i),

y∗b(i) = yfit(i) + e∗bY (i), i = 1, . . . , n

8. Replication, parameters ̂β∗b
0 , ̂β∗b

1

9. Replication, prediction ŷ∗b(n + 1) = ̂β∗b
0 + ̂β∗b

1 ·
[

x(n + 1)

+SX · EN(0, 1)(n + 1)
]

10. Go to step 6 until
b = B = 2, 000

replications exist each
{

̂β∗b
0

}B

b=1
,
{

̂β∗b
1

}B

b=1
,
{

ŷ∗b(n + 1)
}B

b=1
11. Calculate CI on the

basis of replications

Fig. 1 CI construction, definition of residuals. The illustration is for a certain data point, (x(i ′), y(i ′)) (filled
circle), from which the distance to the linear fit (thick, tilted line) is measured via line L; the slope of L
is equal to −λ/̂β1, where λ = [SY (i ′)/SX (i ′)]2 (York 1967). The residuals (dashed lines) are given by
eX (i ′) = [̂β0 + ̂β1 · x(i ′) − y(i ′)]/[λ/̂β1 + ̂β1] and eY (i ′) = −λ · eX (i ′)/̂β1; they can have positive or
negative values. Modified after (Mudelsee 2014, Fig. 8.5 therein)

(because one randomly draws from the data with replacement), can then be augmented
to preserve autocorrelation (over the length of the randomly drawn time blocks) as
well. This renders themoving-block bootstrap (MBB) resampling as suited for climate
data (Mudelsee 2014). The AR(1) model is also applicable to unevenly spaced time
series if it is formulated bymeans of a parameter called persistence time (here called τX
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or τY ); seeMudelsee (2002) for a description of the model and a numerical persistence
time estimation procedure that includes bias correction and CI construction. With the
help of the average temporal spacing, d̄ = [t(n) − t(1)]/(n − 1), the bias-corrected
persistence-time estimates, τ̂ ′

X and τ̂ ′
Y , can then be converted into another pair of

parameters called equivalent autocorrelation coefficients, ̂ā
′
X = exp(−d̄/τ̂ ′

X ) and
̂ā

′
Y = exp(−d̄/τ̂ ′

Y ). The idea of the equivalent autocorrelation coefficient is to have
for the case of uneven spacing a persistence parameter that corresponds to the usual
autocorrelation coefficient in the case of even spacing. Owing to the construction of
the residuals (Fig. 1), it can be shown (Mudelsee 2014) that for the algorithm, both
X and Y yield the same value,̂ā

′
X = ̂ā

′
Y . This value is plugged into the block length

selector by Carlstein (1986) and Sherman et al. (1998),

l = N I NT

{

[

61/2 ·̂ā′
X

/

(

1 −̂ā
′ 2
X

)]2/3 · n1/3
}

, (17)

where N I NT (·) is the nearest integer function. We finally note that there exist other
block length selectors that are also based on estimated autocorrelation properties of
residuals (Mudelsee 2014), but for CI accuracy (i.e., how close to the nominal confi-
dence level a CI performs in a Monte Carlo simulation experiment), this question is of
limited relevance. In other words, the blocks just have to be long enough to preserve
autocorrelation.

Step 6 is bootstrap resampling: draw with replacement random blocks of length
l from the residuals (step 3). The blocks are allowed to overlap. The resam-
ple is filled from the left with the block elements until the sample size, n, has
been reached. If necessary, some elements from the right of the last block are
discarded. For example, let n = 8 and l = 3; a possible sequence would

be
{

e∗b
X (i)

}8
i=1 = {eX (3), eX (4), eX (5), eX (1), eX (2), eX (3), eX (6), eX (7)}. This

procedure is performed in a pairwise manner (Mudelsee 2014), which means

that the random indices are taken for e∗b
Y (i); in the example,

{

e∗b
Y (i)

}8
i=1 =

{eY (3), eY (4), eY (5), eY (1), eY (2), eY (3), eY (6), eY (7)}. Since the adaptation of the
MBB resampling is done for the residuals in a pairwise manner, this adapted bootstrap
procedure is called pairwise-MBBres.

Step 9 shows that the usual step of calculating the replications (i.e., copies of the
estimates) can also be done for prediction. The important new calculation step, which
means one that goes beyond the book by Mudelsee (2014), is the addition of the
random term SX · EN(0, 1)(n + 1), where EN(0, 1)(·) denotes an independent standard
Gaussianvariable (meanzero, standarddeviationunity). This addition serves to include
the predictor uncertainty since X(n + 1) is not exactly known but measured with
error (standard deviation SX ). The Gaussian assumption should be well applicable
to most calibration problems where data are obtained from measurement devices.
This predictor uncertainty is combined with the parameter estimation uncertainties
in order to yield a realistic quantification of the prediction uncertainty. Note further
that the formulation of step 9 corresponds to the homoscedastic error type. In the case
of heteroscedastic errors, one would use SX (n + 1) instead of SX and make some
assumptions. In the provided LINCAL software, for example, the user can select the
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value of SX (n + 1). Evidently, if prior knowledge indicates other values, then the
LINCAL source code should be adapted accordingly and recompiled.

The number of replications in step 10 is set as B = 2, 000. Monte Carlo simulation
experiments (Mudelsee 2014) show that this value is clearly sufficient for an accurate
determination of the CI bounds. For CI construction (step 11), there exist two basic
approaches (Efron and Tibshirani 1993). One is via the percentiles of the B replication
values. The other, used in the present paper, is via the standard deviation over the
replications, which is called bootstrap standard error. For example, in the case of the
slope, it is given by

ŝe
̂β∗
1

=
{

B
∑

b=1

[

̂β∗b
1 −

〈

̂β∗b
1

〉]2
/

(B − 1)

}1/2

, (18)

where
〈

̂β∗b
1

〉 = ∑B
b=1

̂β∗b
1 /B. The bootstrap Student’s t confidence interval then is

(shown for the case of the slope)

CI
̂β1,1−2α =

[

̂β1 + tν(α) · ŝe
̂β∗
1
;̂θ − tν(α) · ŝe

̂β∗
1

]

, (19)

where tν(α) is the percentage point of the Student’s t distribution functionwith ν = n−
2 degrees of freedom, and 1−2α = 95% is the confidence level. The ν value is justified
by the fact that the calibration problem comprises two parameters to be estimated. The
confidence level employed is (besides values of 90% and 99%) a common choice in
climate sciences (Mudelsee 2014). The LINCAL source code details the numerical
calculation of tν(α). An interesting alternative to uncertainty determination via the
pairwise-MBBres procedure, pointed out by one of the reviewers of the present paper,
could be via the effective sample size (Mudelsee 2014; Hu et al. 2017).

3.2 Monte Carlo Simulation Experiment

A Monte Carlo experiment is a computer simulation of a random process (Fishman
1996). The properties of the data-generating process, such asmean and standard devia-
tion, can be prescribed. Hence, unlike in the real world, the truth is known. The random
component is brought in by means of a random number generator (Mudelsee 2020).
Since the prescribed parameter values are known,MonteCarlo simulation experiments
can be used as objective tests of the estimation algorithms of the parameters and of
the CI construction methods. The present paper studies the linear calibration model
(Eq. 2) with parameters β0 and β1. Emphasis is put on unbiasedness of the parame-
ter estimators (Sect. 2) and accuracy of the bootstrap CIs (Sect. 3.1) under realistic
conditions. Six different simulation experiments are carried out, starting with an easy
setting and progressing to more challenging conditions.

The easy simulation setting with un-autocorrelated and homoscedastic Gaussian
noise processes (Table 1) allows unbiased (i.e., within simulation noise) estimations,
with both OLSBC and WLSXY, and for both intercept β0 and slope β1. Additionally,
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the bootstrap CIs show excellent coverage performance, whichmeans that the nominal
level of 95% is nearly achieved for sample sizes (n) as small as 50.

The so-called naive OLSmethod fails already for the easy simulation setting (Table
1) in the case of calibration slope estimation, which means that the empirical coverage
is far off the nominal value (results not shown). This is due to the negative bias of OLS
slope estimation in the presence of predictor noise (Sect. 2.1).

Prescription of a slightly more challenging setting, where Ynoise(i) instead has a
skewed, lognormal shape (Table 2), has within simulation noise no detectable perfor-
mance reduction in terms of bias and coverage. This holds for OLSBC and WLSXY
estimation, and for both intercept and slope.

However, the introduction of a heteroscedastic noise component (Table 3) demon-
strates that a misapplication of the OLSBC estimation method brings a dramatic
reduction in coverage accuracy for the slope. Also, the bias for ̂β1 bymeans of OLSBC
increases (compared to the previous two easy settings) by a factor of between roughly
2 and 100 (dependent on n). On the other hand, use of the indicated (because of
the heteroscedasticity) WLSXY estimation yields acceptably accurate results. In that
regard, empirical accuracy of 92–94% or 98–96% instead of nominally 95% should
be acceptable for applied sciences.

Even further increased challenges for the method, the introduction of a lognormal
shape (Table 4) and, additionally, of autocorrelation (Table 5) does not change the
overall assessment: WLSXY performs acceptably well, while OLSBC fails because
of the heteroscedasticity.

The summary assessment of the performance of the estimation methods for the
errors-in-variables regression model (Eq. 2) is as follows. For homoscedastic noise
processes, both OLSBC and WLSXY perform well, that is, they deliver (within
simulation noise) unbiased calibration slopes and bootstrap CIs with an accuracy
that is acceptable for applied sciences. The bootstrap resampling (pairwise-MBBres)
allows one to take into account both non-Gaussian shapes and autocorrelation of the
random components. On the other hand, RMA estimation yields, even in the easy
situation with un-autocorrelated and homoscedastic Gaussian noise processes (Table
6), unacceptably inaccurate calibration slopes: positive bias (i.e., overestimation) and
undercoverage of CIs.

Although the present paper attaches priority to an unbiased calibration slope esti-
mation, the standard error, se

̂β1
, should also be considered since this measures the

spread (standard deviation) of the estimate. Both uncertainty measures can be readily
combined to form the root mean squared error, RMSE

̂β1
. FollowingMudelsee (2014),

RMSE
̂β1

=
(

se2
̂β1

+ Bias2
̂β1

)1/2
. (20)

For the easyMonteCarlo setting (un-autocorrelated and homoscedasticGaussian noise
processes) and large sample sizes (say, n ≥ 500), the WLSXY estimation method
also outperforms OLSBC and RMA in terms of RMSE

̂β1
(Table 7). For medium-sized

samples (50 ≤ n < 500), however, RMA performs no worse (or even better) than
WLSXY or OLSBC. And for small sample sizes (n ≤ 50), there are no positive effects
ofWLSXYorOLSBC in terms of RMSE

̂β1
, not evenwhen comparedwithOLS (Table
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Table 6 Monte Carlo simulation
experiment, linear
errors-in-variables regression
(Eq. 2) with un-autocorrelated
and homoscedastic Gaussian
noise processes

n RMA

γ
̂β0

Bias
̂β0

γ
̂β1

Bias
̂β1

10 0.914 −0.000383 0.909 +0.023350

20 0.940 +0.000237 0.930 +0.017742

50 0.944 −0.000445 0.928 +0.015891

100 0.944 +0.000332 0.925 +0.014998

200 0.945 +0.000165 0.913 +0.015126

500 0.944 −0.000061 0.881 +0.014530

1,000 0.943 +0.000050 0.822 +0.014672

Implementation details are as in Table 1, with the following exception:
RMAestimation (Sect. 2.3) is employed instead ofOLSBCorWLSXY

Table 7 Monte Carlo simulation experiment, linear errors-in-variables regression (Eq. 2) with un-
autocorrelated and homoscedastic Gaussian noise processes

n OLS OLSBC WLSXY RMA

Bias
̂β1

RMSE
̂β1

RMSE
̂β1

RMSE
̂β1

RMSE
̂β1

10 −0.048502 0.196151 0.261060 0.222625 0.193319

20 −0.049304 0.131203 0.145591 0.140027 0.122674

50 −0.049263 0.088191 0.085059 0.083019 0.075074

100 −0.049070 0.070697 0.059449 0.058395 0.053108

200 −0.048728 0.060534 0.041697 0.041004 0.038825

500 −0.048805 0.053804 0.026228 0.025860 0.026809

1,000 −0.048860 0.051367 0.018411 0.018088 0.021640

Implementation details are as in Table 1. The focus is on RMSE for slope estimation; results from the OLS
method are also shown

7). It is emphasized that these assessments apply only to the easy setting; for more
complex settings, the WLSXY method should be optimal. Finally, the so-called naive
OLS calibration estimation method yields completely unacceptable RMSE

̂β1
values

(Table 7). Evidently, this poor performance is due to the negative bias of the slope via
the OLS estimation (Sect. 2.1).

4 Application

Among the various natural archives where information about past climate variations
is stored, the coral archive is distinguished by (i) a comparably quick growth (i.e., a
high accumulation rate of the carbonate material) and (ii) the presence of detectable
yearly growth bands. This has allowed paleoclimatologists to infer climate variability
on subseasonal timescales with a high relative temporal accuracy (i.e., with respect
to an absolute fixpoint), thereby extending the instrumental record back in time by
thousands and millions of years (Felis 2020). A mild deficit of the method stems from
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often-reduced absolute temporal accuracy in fossil corals (i.e., the fixpoint date is
uncertain) and the shortness of the records. Typical is a monthly or bimonthly spacing
over a length of a few decades to centuries—corals provide accurate snapshots of
subseasonal climate, possibly deeply back in time.

A frequently employed proxy variable is oxygen isotopic composition, which is
measured by a mass spectrometer on the coral carbonate material. Conventionally, the
isotopic values are reported in the delta notation,

δ18O =
[

(18O/16O)sample
/

(18O/16O)VPDB − 1
]

· 1, 000�, (21)

where (18O/16O) is the number ratio of oxygen isotopes 18O and 16O, and VPDB
stands for the Vienna Pee Dee Belemnite standard material, against which the sample
is compared. Corals that grew in the surface water in tropical regions can therefore
provide proxy records of SST (Felis 2020). As mentioned in Sect. 1, the real world in
paleoclimatology is not perfect, and anumber of uncertainties are present in coral proxy
thermometry: imperfect devices and material (e.g., mass spectrometer, thermometer,
or standard) and confounding climate variables (e.g., sea-surface salinity). Pairedmea-
surements, where the δ18O data are augmented with information from another proxy
(e.g., Sr/Ca elemental ratios) obtained on the same sample, can therefore improve
proxy-derived inferences (Pfeiffer et al. 2019).

The paper by Brenner et al. (2017) presented an SST–δ18O calibration obtained
from modern Isopora corals on the Great Barrier Reef, off the northeastern coast of
Australia. In total, the δ18O data were measured on five corals from near Heron Island;
between one and three corals supplied monthly resolved series between October 1971
and July 1976, while between one and two corals grew between September 2009 and
August 2012. For these two time intervals, there are no missing data, and the sample
size of the combined monthly series is n = 94. Brenner et al. (2017) utilized the
Extended Reconstructed Sea Surface Temperature V3b (ERSST V3b) dataset from
the National Oceanic and Atmospheric Administration (NOAA, Boulder, CO, USA),
which is available atmonthly resolution on a 2.0 degree latitude by 2.0 degree longitude
global grid; Heron Island is presented by the grid cell centered at 22◦S, 152◦E. ERSST
V3b is described in detail by Smith et al. (2008).

Since the original five δ18O records from the various corals could possibly be shifted
against each other due to local biological or microclimatological factors, Brenner et al.
(2017) determinedfive centered δ18O series by subtracting fromeach series the average
δ18O calculated over the shared intervals. These centered series were then averaged
to construct a composite coral record. This procedure means that the target of the
inference is just the calibration slope, not the intercept.

For an individual coral δ18O measurement data point, Brenner et al. (2017) report
accuracy of 0.11�. We take this value for the calculation of the standard error, sX (i),
of the composite coral δ18O by means of error propagation. This means that if three
corals contribute to an x(i) value, then sX (i) = 0.11�/

√
3 ≈ 0.064�; if two corals

contribute, then sX (i) = 0.11�/
√
2 ≈ 0.078�; and if one coral contributes, then

sX (i) = 0.11�. As regards the SST standard error, Smith et al. (2008) give the SST
error variances dependent on time and grid cell (available for download at https://
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Fig. 2 Application, data. Filled symbols, SST; open symbols, coral δ18O. Note inverted δ18O axis. See the
main text (Sect. 4) for further explanations and Table 8 for numerical values

psl.noaa.gov/data/gridded/data.noaa.ersst.v3.html, last accessedNovember 21, 2022);
and the standard error, sY (i), is simply the square root of the variance. The time series
are shown in Fig. 2, and the full dataset {t(i), x(i), y(i), sX (i), sY (i)}94i=1 is given in
Table 8. The heteroscedastic error components indicate that the estimation method to
be employed for the linear calibration is WLSXY (Sect. 2.2).

The numerical values for the resulting calibration fit (Fig. 3) are as follows. The
bias-corrected persistence-time estimate for SST and coral δ18O is τ̂ ′

Y = 1.2 years and
τ̂ ′
X = 0.9 years, respectively. This leads to a block length of l = 9 for pairwise-MBBres
resampling (Eq. 17). The typical number of B = 2, 000 resamplings is used for the
bootstrap algorithm (Sect. 3.1). The sample size is n = 94. This setting should provide
highly accurate Student’s t CIs for theWLSXY-determined slope and also for the SST
predictions, as the corresponding entries (for n = 100) in Table 5 indicate. Finally, the
slope estimate with 95% CI is

̂β1 = −6.5 ◦C/� [−8.0 ◦C/�;−5.0 ◦C/�]

. (22)

The fitted calibration curve (Fig. 3) also serves for SST prediction from new coral
δ18O values, denoted as x(n + 1) in the statistical algorithm (Sect. 3.1). The assumed
predictor uncertainty is sX (n + 1) = 0.11�, which corresponds to a situation where
just one coral is available for prediction of new SST values in the area of the Great
Barrier Reef. For the application, a wide range of densely spaced x(n + 1) values
are shown, between −1.5� and +1.5� (Fig. 3). The resulting 95% CIs for the
predictions are plotted as a shaded band. The borders of the confidence band show a
minimal degree of jaggedness (visible in the electronic version of the present paper
by means of zooming), which stems from the fact that only B = 2, 000 resamplings
are performed (and not an infinite amount). As with any extrapolation, a sound degree
of caution in the interpretation for data regions extending beyond the sampled range
should be exercised.

The persistence time estimates of 1.2 years for SST and 0.9 years for coral δ18O
are rather long when compared with other instrumental series of similar length and
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Table 8 Application, data

t(i) x(i) y(i) sX (i) sY (i) t(i) x(i) y(i) sX (i) sY (i)

1971.750 +0.467 25.39 0.064 0.412 1, 972.583 +0.216 22.52 0.064 0.346

1971.833 +0.140 26.38 0.064 0.387 1, 972.667 +0.013 23.13 0.064 0.346

1971.917 −0.111 27.14 0.064 0.374 1, 972.750 −0.069 24.60 0.064 0.346

1972.000 −0.114 27.71 0.064 0.374 1, 972.833 −0.344 25.94 0.064 0.361

1972.083 +0.015 27.50 0.064 0.374 1, 972.917 −0.393 26.72 0.064 0.361

1972.167 +0.137 26.97 0.064 0.374 1, 973.000 −0.335 28.23 0.064 0.361

1972.250 +0.208 25.81 0.064 0.374 1, 973.083 −0.410 28.74 0.064 0.346

1972.333 +0.297 24.28 0.064 0.374 1, 973.167 −0.422 28.20 0.064 0.332

1972.417 +0.162 22.68 0.064 0.374 1, 973.250 −0.199 26.84 0.064 0.316

1972.500 +0.176 22.36 0.064 0.346 1, 973.333 −0.029 25.71 0.064 0.332

1973.417 +0.189 24.49 0.064 0.316 1, 974.250 +0.092 26.23 0.064 0.387

1973.500 +0.304 23.38 0.064 0.316 1, 974.333 +0.149 24.95 0.064 0.387

1973.583 +0.327 23.23 0.064 0.332 1, 974.417 +0.185 23.03 0.064 0.387

1973.667 +0.184 23.86 0.064 0.332 1, 974.500 +0.200 22.15 0.064 0.387

1973.750 +0.117 24.78 0.064 0.332 1, 974.583 +0.316 22.13 0.064 0.374

1973.833 +0.022 26.10 0.064 0.361 1, 974.667 +0.331 22.93 0.064 0.374

1973.917 −0.015 27.12 0.064 0.361 1, 974.750 +0.344 24.17 0.064 0.374

1974.000 −0.156 27.42 0.064 0.374 1, 974.833 +0.233 25.63 0.064 0.374

1974.083 −0.216 27.58 0.064 0.387 1, 974.917 +0.001 26.82 0.064 0.374

1974.167 +0.002 26.99 0.064 0.387 1, 975.000 −0.152 27.51 0.064 0.374

1975.083 −0.255 27.46 0.078 0.374 1, 975.917 −0.262 26.47 0.078 0.400

1975.167 −0.018 27.77 0.078 0.374 1, 976.000 −0.165 27.25 0.078 0.400

1975.250 +0.256 26.84 0.078 0.374 1, 976.083 +0.003 27.03 0.078 0.400

1975.333 +0.379 25.31 0.078 0.374 1, 976.167 +0.133 27.06 0.078 0.387

1975.417 +0.384 23.36 0.078 0.387 1, 976.250 +0.355 26.12 0.078 0.387

1975.500 +0.393 22.54 0.078 0.387 1, 976.333 +0.483 24.68 0.078 0.400

1975.583 +0.413 22.65 0.078 0.387 1, 976.417 +0.759 23.28 0.078 0.400

1975.667 +0.352 23.19 0.078 0.387 1, 976.500 +0.858 22.27 0.078 0.412

1975.750 +0.015 24.24 0.078 0.387 2, 009.667 −0.198 22.96 0.110 0.510

1975.833 −0.201 25.54 0.078 0.387 2, 009.750 −0.396 23.71 0.110 0.510

2009.833 −0.369 24.81 0.110 0.500 2, 010.667 +0.260 23.16 0.078 0.520

2009.917 −0.529 25.82 0.110 0.500 2, 010.750 +0.134 24.03 0.078 0.500

2010.000 −0.654 27.44 0.110 0.510 2, 010.833 +0.048 24.91 0.078 0.500

2010.083 −1.007 28.14 0.110 0.520 2, 010.917 −0.189 25.98 0.078 0.500

2010.167 −0.858 28.39 0.110 0.520 2, 011.000 −0.253 27.60 0.078 0.500

2010.250 −0.823 28.07 0.110 0.510 2, 011.083 −0.456 27.79 0.078 0.510

2010.333 −0.788 26.84 0.110 0.510 2, 011.167 −0.240 27.63 0.078 0.510

2010.417 −0.752 25.34 0.110 0.520 2, 011.250 −0.177 27.39 0.078 0.510

2010.500 −0.421 24.20 0.110 0.510 2, 011.333 −0.080 26.42 0.078 0.520

2010.583 +0.046 23.09 0.110 0.520 2, 011.417 +0.212 24.64 0.078 0.510
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Table 8 continued

t(i) x(i) y(i) sX (i) sY (i) t(i) x(i) y(i) sX (i) sY (i)

2011.500 +0.436 23.09 0.078 0.500 2, 012.333 −0.117 26.19 0.078 0.480

2011.583 +0.593 22.40 0.078 0.500 2, 012.417 +0.108 24.98 0.078 0.480

2011.667 +0.503 22.10 0.078 0.500 2, 012.500 +0.286 23.38 0.110 0.480

2011.750 +0.255 22.61 0.078 0.490 2, 012.583 +0.301 22.61 0.110 0.480

2011.833 +0.055 24.11 0.078 0.490

2011.917 −0.050 25.51 0.078 0.490

2012.000 −0.239 26.77 0.078 0.490

2012.083 −0.338 27.20 0.078 0.480

2012.167 −0.490 27.81 0.078 0.480

2012.250 −0.315 27.50 0.078 0.480

Time, t(i), is given as year AD; predictor with standard error, x(i) ± sX (i), is coral δ18O in � units; response with
standard error, y(i) ± sY (i), is SST in ◦C units

Fig. 3 Application, result. The data points (SST, coral δ18O) are shown as filled symbols, the standard
errors as vertical and horizontal bars, the WLSXY-determined calibration curve as a solid line with a 95%
Student’s t CI band (shaded) for the prediction. Note the inverted δ18O axis
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resolution (Mudelsee 2014). Evidently, these positive autocorrelations reflect the sea-
sonal cycles, which are clearly expressed in the time series data (Fig. 2). Although in
principle a harmonic seasonal cycle model for the data could be formulated instead of
the AR(1) (Sect. 3.1.1), such a model mis-specification should have negligible effects
on the CI bounds owing to the fact that, in practice, the block length (determined as
l = 9 in this application) must only be large enough to preserve the autocorrelations.
However, the autocorrelations have to be taken into account for uncertainty determi-
nation. This is illustrated by means of a numerical experiment, where l = 1 (i.e., no
preserved autocorrelation) is prescribed, which would lead to a clearly too narrow CI
for the slope (as compared with the true CI given in Eq. 22), namely

̂β1, l=1 = −6.5 ◦C/� [−7.3 ◦C/�;−5.7 ◦C/�]

. (23)

Still, however, it is wise to keep the seasonal data for the calibration (and to not perform
an annual downsampling), since this means that (i) the sample size is kept and not
reduced, and (ii) the calibration range of the coral δ18O values is kept wide.

The calibration slope—SST change per coral δ18O change—is estimated as ̂β1 =
−6.5 ◦C/�. The negative signmeans that an increase in coral δ18O indicates a cooling
of SST. This estimate is obtained for the correct regression model (Eq. 2), namely, of
the response variable Y (SST) on the predictor variable X (coral δ18O). The regression
direction is correct because the task of the proxy, X , is to predict the response, SST.
It may be instructive to quantify the effects of the selection of the incorrect regression
direction (of X on Y ). This would lead to a slope estimate of −0.15�/◦C, which,
when inverted, corresponds to ̂β1, incorrect = −6.7 ◦C/�. This incorrect estimate is
clearly within the CI for the correct estimate (Eq. 22). However, one cannot conclude
that the selection of the incorrect regression direction has always negligible effects—
this depends on the accuracy of the model, that is, the sizes of standard deviations
and autocorrelations of the noise components in Eq. (2). Bearing this caveat about
the incorrect regression direction in mind, one can compare the slope estimate of
̂β1 = −6.5 ◦C/�with 95%CI

[−8.0 ◦C/�;−5.0 ◦C/�]

with values from previous
studies. A remark on proxy system or forward modeling may be appropriate. The
criticism expressed here on the incorrect regression direction is from a pure statistical
viewpoint. It has nothing to do with the emerging field of proxy system modeling,
which has led over the past few years to high-resolution insights into past climates.
Proxy system modelers have the vision of full mathematical/physical descriptions of
how the environment (e.g., climate) influences a sensor (e.g., δ18O) in an archive (e.g.,
a coral), which is then sampled and used for measurements; see, for example, the
review by Evans et al. (2013).

The direct comparison partner with our result is the estimate from the paper by
Brenner et al. (2017), who used the same data (kindly sent to the present author),
monthly δ18O measured on Isopora corals from Heron Island and SST from ERSST
V3b. Brenner et al. (2017) gave preferences to the estimate ̂β1, incorrect = −5.4 ◦C/�,
which was determined via RMA regression. The other value obtained by these authors
on the same data is ̂β1, incorrect = −8.1 ◦C/�, which stems from generalized least-
squares regression, which is a method similar to OLS (Mudelsee 2014). The present
paper is left to note that for statistical/methodological reasons, the preference should
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be on neither value but rather on Eq. (22) and ̂β1 = −6.5 ◦C/�; however, the two
values presented by Brenner et al. (2017) cover roughly the range of the 95% CI given
in Eq. (22).

The same data as used here or by Brenner et al. (2017) were studied in a thesis by
Lemley (2012); however, he used only a strongly reduced subset, as Fig. 12 of the
thesis reveals. The statistical estimation technology was not clearly communicated,
and the resulting calibration slope of −6.7 ◦C/�, which is in excellent agreement
with the estimate from the present paper (Eq. 22), could well be a mere coincidence.

Also, Felis et al. (2014) presented a calibration of δ18O measured on Isopora,
including corals from Heron Island, but deviated as follows: they (i) used bulk coral
values for reef settings with different average temperatures (so-called core-top calibra-
tion) along a latitudinal transect (from Papua New Guinea to Heron Island) instead of
monthly values from records; (ii) employed another SST data product; and (iii) applied
OLS and RMA regression techniques. The estimates of ̂β1, incorrect = −5.1 ◦C/� (for
OLS) and −4.6 ◦C/� (for RMA) obtained by Felis et al. (2014) therefore deviate
from the value of ̂β1 = −6.5 ◦C/� from Eq. (22).

Finally, Nishida et al. (2014) established a calibration on data from cultivated
Isopora corals in laboratory experiments where the water temperature could be advan-
tageously controlled; the range employed in that study (between 21.1 and 29.5 ◦C)
is comparable to what is shown in Fig. 3. Their result (̂β1, incorrect = −6.7 ◦C/�) is
apparently in excellent agreement with the result from the present paper (Eq. 22). To
assess this, we consulted the JMP statistical software used by Nishida et al. (2014),
which seems to perform OLS in an analysis-of-variance framework. Unfortunately,
Nishida et al. (2014) presented only significance tests on the slope (but no CIs), and
therefore we conclude that the excellent agreement may to some extent be spurious.

It is tempting to speculate about the general applicability of the obtained proxy
calibration slope (Eq. 22) of ̂β1 = −6.5 ◦C/�. Regions other than Heron Island?
Unfortunately, published results on Isopora corals from elsewhere are sparse. Other
coral species? (Brenner et al. 2017, Table 3 therein) give many estimates from Porites
corals and other regions, and these values seem in rough agreement with the value
from Eq. (22). This value is also, within uncertainty bounds, in agreement with the
slope estimate (−6.1 ◦C/�) of a Porites calibration work from the Red Sea using
the correct regression direction and OLS (Felis et al. 2000). Additionally, an often-
cited calibration study on Diploria corals from the Atlantic Ocean reported similar
values (Hetzinger et al. 2006). If the calibration slopes obtained from various regions
and various coral species agree (within confidence limits), then one would be in a
favorable position and would be allowed to calculate an overall calibration slope
(from all data points), an estimate that would then enjoy wider applicability. In that
regard, is is perhaps apt to remind readers of the work done by the fathers of isotope
paleoclimatology: Epstein et al. (1953) went so far as to assume a universal calibration
slope of ̂β1 = −4.3 ◦C/� for allmarine carbonates. (To bemore precise, these authors
also assumed a quadratic term.) Notably, Epstein et al. (1953) applied the correct
regression direction, namely of the response variable temperature on the predictor
δ18O.
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5 Conclusions

The linear calibration model is a powerful statistical tool that can be utilized to predict
an unknown variable, Y , by means of observations of a proxy variable, X . Due to the
nature of most prediction tasks, it is the relative change that is relevant for practical
applications (i.e., the slope, which determines the change in Y per change in X ), while
the absolute value (i.e., the intercept) is less important. Note that the intercept is often
arbitrarily constrained via use of anomaly values or employment of certain standards
or units.

Since the calibration involves the estimation of regression model parameters on
the basis of observed noisy datasets of a limited size, there are uncertainties involved.
It is therefore of key importance to achieve a calibration slope estimation without
bias. However, due to the fact that the proxy observations exhibit errors (i.e., predictor
noise), advanced statistical routines have to be employed for correctly fitting the linear
errors-in-variables calibration model (Eq. 2) to data. A similar quest for a state-of-
the-art, data-driven uncertainty determination algorithm exists, which is rooted in the
typically rather complex properties of the associated noise processes (i.e., for both
Y and X ), namely, non-Gaussian distributional shapes and autocorrelations. Such so-
called problematic noise properties are ubiquitous in climate sciences, but they also
appear in other branches of natural sciences, social sciences, medicine, or engineering.

The present paper shows that WLSXY estimation is able to deliver accurate and
unbiased slope estimations under heteroscedasticity. In the case of homoscedasticity,
besides WLSXY, the OLSBC estimation approach also performs well. On the other
hand, estimation techniques to be avoided include OLS and RMA regression estima-
tion, each of whichmay lead to severely biased calibration slope estimates. It is further
necessary to take the correct regression direction into account, which is of the response
variable, Y (e.g., SST), on the predictor or proxy variable, X (e.g., coral δ18O).

Both methods of choice, however, require prior knowledge about the size of the
predictor noise; this means that for homoscedasticity, OLSBC requires information
about SX , and for heteroscedasticity, WLSXY about SX (i). If such knowledge is
unavailable, then there is a problem with calibration since a biased slope estimate
may result. However, the experimenter, who generates the prediction values, X(i),
has some control to reduce the bias. As Eq. (8) informs, such control can be gained
by making VAR[X(i)] large against a guessed value of S2X ; then the results obtained
using OLS lead to only a small bias. (Mudelsee 2014, Sect. 8.2.1, Sect. 8.3.2, Sect.
8.3.3 and Sect. 8.3.4 therein) presents ideas on modeling incomplete prior knowledge
and several Monte Carlo simulation experiments on that theme. The Monte Carlo
simulation results further demonstrate that a certain number of points (say, n ≥ 50)
may be necessary for the methodological advantages of OLSBC or WLSXY to take
significant effect.

The present paper also introduces a powerful bootstrap resampling scheme (Sect.
3.1) which helps to obtain accurate CIs and prediction intervals under the above-
mentioned problematic noise properties. A Monte Carlo simulation experiment with
artificial time series reveals good coverage performance of 95% Student’s t CIs under
real-world conditions.
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The errors-in-variables regression problemhas long been known in climate sciences
aswell; seeDeLong et al. 2007;Mann et al. 2007;Ammann et al. 2010;Mudelsee 2014,
Ch. 8 therein; Thompson 2022, Sect. 3.6 therein and references cited in these works.
The two methodological novelties presented in this paper are as follows. First, the
bootstrap approach for CI construction (Sect. 3.1) is introduced to the peer-reviewed
literature; the core of it has already been described in the book byMudelsee (2014), but
the present paper gives the full formula for the determination of the predictor uncer-
tainty (Sect. 3.1). Second, the Monte Carlo simulation experiment (Sect. 3.2) presents
new computer runs which show quantitatively that the WLSXY and OLSBC methods
perform well for the proxy calibration problem in the presence of predictor noise,
while the OLS and RMA methods fail. To the best of the author’s knowledge, there
exist no other Monte Carlo simulation experiments published in the peer-reviewed
literature on such tests of uncertainty measures for proxy calibration. The present
paper therefore takes a step beyond the state of the art as regards method validation
for that estimation problem. In addition to those novelties, the present paper has a
new paleoclimatic application (Sect. 4) and presents a novel calibration software tool
(Appendix).

The data-analytical machinery developed in the present paper was applied to a
published dataset of SST predictions by means of δ18O measurements made on the
coral climate archive. Evidently, there is room for future application of the proxy
technique shown herein on the basis of new datasets employed. However, it should
also be enlightening to reanalyze existing data series using the presented state-of-
the-art methodological approach in a consistent manner. The approach itself is put
into Fortran software (LINCAL), which is made publicly available as source code
(see Appendix). As a reminder, paleoclimatic science has over the past few decades
developed powerful laboratory-based approaches to improve the prediction quality
of proxy variables (Bradley 1999; Cronin 2010; Brenner et al. 2017; Felis 2020).
This means that the calibration results presented here (Fig. 3) are not the last word.
Improved calibrations for coral δ18O as an SST proxy are expected to come from
paired measurements, that is, from δ18O and Sr/Ca measured on the same sample.
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Appendix: Calibration Software LINCAL

The software LINCAL can be used to estimate the parameters of a linear errors-
in-variables calibration model (Eq. 2) and to predict the response, Y , over a certain
range of values of the predictor, X . The software, as Windows executable and as
Fortran 90 source code, is available at Zenodo (doi: 10.5281/zenodo.7440651) and the
author’s academic website (https://www.manfredmudelsee.com/software/LINCAL).
These sites also contain a file (Brenner.txt) with the application data (Sect. 4) to
serve testing of the software and reproducing the findings of the present paper. This
appendix gives a short manual on how to run LINCAL; the source code contains a
detailed documentation of the method and its numerical implementation.

It is convenient to (1) copy the exetutable on the computer into a folder of
choice (say, C:/LINCAL), (2) open the Windows command prompt (by running
cmd.exe from the Windows start menu), (3) navigate into the folder (by typing “cd
C:/LINCAL” followed by “Enter”), and (4) run the software on the command line
(“LINCAL.exe” followed by “Enter”). After a welcome screen (“Enter”), the four
data cases—homoscedastic/heteroscedastic errors and availability/unavailability of
time values—are explained to the user. Case 1 (homoscedasticity, unavailability of
time values) requires an input data file (possibly including the path on the computer)
containing {x(i), y(i)}ni=1 and a manual input of SX and SY ; case 2 (homoscedasticity,
availability of time values) requires an input data file containing {t(i), x(i), y(i)}ni=1
and a manual input of SX and SY ; case 3 (heteroscedasticity, unavailability of time
values) requires an input data file containing {x(i), y(i), SX (i), SY (i)}ni=1; and case 4
(heteroscedasticity, availability of time values) requires an input data file containing
{t(i), x(i), y(i), SX (i), SY (i)}ni=1.

The estimation is performed by the software via OLSBC (homoscedasticity) or
WLSXY (heteroscedasticity), while the prediction is carried out by means of the
estimated parameters. Under homoscedasticity, the value of SX is taken for the cal-
culation of the prediction error (Sect. 3.1, step 9), while under heteroscedasticity, a
new value, SX (n + 1), can be selected. The prediction values, x(n + 1), are between
xmin − f · (xmax − xmin) and xmax + f · (xmax − xmin), where xmin is the minimum
and xmax the maximum of {x(i)}ni=1. The value of f = 0.5 makes the prediction
interval sufficiently wide. The number of prediction points is 2,000, which achieves a
sufficiently densely spaced prediction grid.

The output file (LINCAL.dat) contains references, information about the data case,
input data file name, sample size, standard deviations, estimation result with 95%
bootstrap Student’s t CIs, persistence properties (̂τ ′

X , τ̂
′
Y ), bootstrap block length, and

the prediction values including upper and lower CI bounds.
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