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Abstract

A new estimator of the lag-1 serial correlation coefficient p,
Sitede, ) Sitet,  is compared  with  the old  estimator,
e | il €2, for a stationary AR(1) process with known mean. The
mean and the variance of both estimators are calculated using the second or-
der Taylor expansion of a ratio. No further approximation is used. In case of
the mean of the old estimator, we derive Marriott and Pope’s (1954) formula,
with (n — 1)7! instead of (n)~!, and an additional term oc (n —1)72. In case
of the variance of the old estimator, Bartlett’s (1946) formula results, with
(n — 1)7! instead of (n)~!. The theoretical expressions are corroborated with
simulation experiments. The main results are as follows. (1) The new esti-
mator has a larger negative bias and a larger variance than the old estimator.
(2) The theoretical results for the mean and the variance of the old estimator

describe the principal behaviours over the entire range of p, in particular, the

decline to zero negative bias as p approaches unity.

Mudelsee M (1998) Investigating a new estimator of the serial correlation coefficient.
Institute of Mathematics and Statistics, University of Kent, Canterbury, IMS Technical
Report UKC/IMS/98/15, Canterbury, United Kingdom, 22 pp.



Mudelsee
Text Box
Mudelsee M (1998) Investigating a new estimator of the serial correlation coefficient. Institute of Mathematics and Statistics, University of Kent, Canterbury, IMS Technical Report UKC/IMS/98/15, Canterbury, United Kingdom, 22 pp.


1 Introduction

Consider the following estimators of the serial correlation coefficient p of
lag 1 from a time series ¢; (i = 1,...,n) sampled from a process & with
known (zero) mean:
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p = 1 €€ 11 (1)
Zzn:_ll 622 ’
-1.3
[A)* _ Z?:l € €it1 (2)
= -1 _4 -
Yy €

Estimators of type (1) are well-known (e. g. Bartlett 1946, Marriott and
Pope 1954), whereas (2) is new to my best knowledge.
Let &; be the stationary AR(1) process,

E ~ N(0, 1),
£

1

pgi_l—FUi, 7::2,...,71, (3)

with ¢, i. i. d. ~ N (0, 0?) and 02 = 1 — p?. The following misjudgement of
mine led to the present study. p* minimises

n—1

Z(Q’H - PGZ‘)Q 5127

i=1
which is a weighted sum of squares. However, since &; has constant variance
unity, no weighting should be necessary.

Nevertheless, we compare estimators (1) and (2) for process (3). We re-
strict ourselves to 0 < p < 1. We first calculate their variances, respectively
means, up to the second order of the Taylor expansion of a ratio, similarly
to Bartlett (1946), respectively Marriott and Pope (1954). Since we concen-
trate on the lag-1 estimators and process (3), no further approximation is
necessary. These theoretical expressions and also those of White (1961) for
estimator (1) are then examined with simulation experiments.

2 Series expansions

2.1 0Old estimator

2.1.1 Variance

We write (1) as

1 -1
5 = n > €€it1 (4)
% Z?:_f 5?
c
= —,say,



and have, up to the second order of deviations from the means of ¢ and v,
the variance

var(p) = var(c/v) ~ ‘;r((j)) —2 (C)COE‘;%)’)C) 2(0)‘];&;((:)) (5)

We now apply a standard result for quadravariate standard Gaussian distri-
butions with serial correlations p; (e. g. Priestley 1981:325),

COV(€a6a+s7 Eb€b+s+t) = Po—a pbfath + pbfaJrert Po—a—s>

from which we derive, for ¢; following process (3):
1 n—1 1 n—1
COov - Z €a€a+s, - Z 6b€b+s+t —
" a=1 "=

]' iy —Qa —Qa —a—+Ss —a—S
= — Z (plb Iplb +tl plb +s5+t] p\b \). (6)
a,b=1

Without further approximation we can directly derive the various constituents
of the right-hand side of (5) by the means of (6).

1 n—1
var(c) = var ( > Ei€i+1> =(put s=1and t=01in (6))
"o
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a,b=1 a,b=1

We find, by summing over the points of the a-b lattice in a ‘diagonal’ manner,

n—1 n—2

Z pz\b—a\ _ (n _ 1) +9 Z Z-p2(n—z'—1)
a,b=1 i=1
2 (0" = )
= -1 —1 2— = 7
(n ><1—ﬁ >+ (1—p2)? ®)

(at the last step we have used the arithmetic-geometric progression), and

n—1 n—2
Z p|b—a+1| p\b—a—1| — (n . 1) p2 +9 Zip2(n—z—1)
a,b=1 =1
2 (= p7?)
= (n—1 P2 42— (8
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(7) and (8) give var(c). Further,
1 n—1 1 n—1
cov(v,c) = cov < S => €i€i+1>
Nz Mo



= (puts=0andt=11in (6))

2 n—1

o b—a b—a—+1
= > b
a,b=1
We find
n—1 n—2 )
Z p\b—a\ p|b—a+1| _ p2n—3+ Z(QZ—'_ 1) p2(n—z)—3
a,b=1 i=1
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(At the last step we have used the arithmetic-geometric and also the geomet-
ric progression.) (9) gives cov(v, ¢). Further,

+2 9)

1 n—1

var(v) = var (n 2 ef) = (put s=t=01n (6))

E(v) = (10)

and

B(e) = 2220 (11)

All three terms contributing to var(p) have a part oc (n —1)~2. However,
these parts cancel out:

e =00
var(p) 1) (12)

Bartlett (1946) already gave, up to the order (n)™!,

var(p) ~ (1 _np >, (13)

which cannot be distinguished from our result.



2.1.2 Mean

We have, up to the second order of deviations from the means of ¢ and
v, the mean

var(v)
B3 (v)

B() = Ele/o) = 5 ) ~ “pars

(14)

+ E(c)

As above, we derive cov(v, ¢) and var(v) from (9) and (7), respectively, and
have E(v) and E(c) given by (10) and (11), respectively, yielding

2p 2 (p—p")

(n—1) (=12 (1-p2)

Marriott and Pope (1954) investigated the estimator

(15)

E(p) ~p—

1 n—1
o =1 2ei=1 %1
p

- 1 n—1 9
n i1 €

and gave, up to the order (n)™!,

which cannot be distinguished from the first two terms of our result.

2.1.3 Unknown mean of the process

I have also tried to calculate up to the same order of approximation the
mean and the variance of the estimator

n—1 1 n—1 1 n—1

i=1 (Ei -1 2=l Ej) (%1 n—1 2j=1 6j+1)
n—1(p _ 1 gw-l, 2 '
i=1 \& 7 a1 =16

for the case when the mean of the process is unknown. That would require
to calculate the following sums over the points of a cubic lattice:

nz_:l p\b—a\ p|c—a—s|

a,b,c=1

for s = 0 and 1. However, I was unable to obtain exact formulas.

2.2 New estimator
2.2.1 Variance
We write (2) as

1 n—1 3
D Y ﬁ
=T — w,say.
n 2ui=1 €
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var(p*), up to the second order of the Taylor expansion, is given by (5),
substituting d for ¢ and w for v, respectively. We need the following result
for octavariate standard Gaussian distributions with serial correlations p;
(Appendix),

COV(E?LGCH—S? 6bEb—&-s-‘,-t) =9 Po—a pb—a+t + 9 pb—a+s+t Po—a—s
+ 18 Ps Po—a Po—a+s+t + 18 Pb—a Pb—a—s Ps+t
+ 18 Ps pg—a ps+t + 18 pz—a pb—a+s+t Po—a—s

+6 pg—a Po—a+ts (16)

from which we derive, for ¢; following process (3):

1 n—1 1 n—1
cov ( Z Eaea—i-s? Z €b€b+5+t> =

Z |b al |b a+t| + 9p|b a+s+t| p|b a—s|
a,b=1

+18 p\ \p|b al p‘b7a+8+t‘ + 18 p|b7a| p|bfafs| p\ert\
+18 p‘s‘ pQ‘b—a| p|8+t‘ + 18 p2|b—a‘ p|b—(l+8+t| p|b—a—5|

4 6p3|bfa| p|b7a+t‘ ) (17)

Without further simplification we can directly obtain the various constituents
of var(p*) by the means of (17).

1n1

var(d) = ( Z € el+1> (put s=1and t =0 in (17))
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The first and the fifth sum is given by (7), the second sum by (8) and the
third by (9). We find,

n—1 n—1
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which is given by (9),

n—2
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(7), (8), (9), (18) and (19) give var(d). Further,
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which is given from (7) and (19), respectively. We further need

E(w) = 3(nn_1) (21)
and
E(d) = 3’)“;_1). (22)

As for the old estimator, the terms o< (n—1)~2 which contribute to var(p*)
cancel out:

(23)

2.2.2 Mean

We use (14) with d instead of ¢ and w instead of v, respectively. We
derive cov(w,d) from (7), (9) and (20), further, var(w) from (7) and (19),
and we have E(w) and E(d) given by (21) and (22), respectively. This yields,
up to the second order of deviations from the means of d and w,

- 1 4 2
B = p—<n_1>3p<5—1+p2>

1 (p—p*")
(n—1)2 [4 s

(p* = p*t)

" A=) 1+ 022

+ 2 (24)

2.3 Remark

p* is found to have a larger negative bias and also a larger variance than p.
In the simulation experiment, we intend not only to prove that. We are also
interested to examine the significance of the term oc (n—1)72 in (15). In the
comparison we include the theoretical results of White (1961) who studied
the old estimator (1) for process (3). He calculated the kth moment of (¢/v)
via the joint moment generating function m(c,v), with ¢ and v defined as in
(4) without the factors 1/n,

E(ﬁk)Z/Om/v;.../U;W

He expanded the integrand to terms of order n~
lowing results (the index ‘W’ refers to his study):

dvy dvy ... dv,.
c=0

3 and p* and gave the fol-

. 1 1 5 1 9 53, 12,

e = (G- ra) - () - we @
. 2 4 2 2 2

B = (1-74 =)ot s+ o (26)



3 Simulation experiments

In the first experiment, for each combination of n and p listed in Table
1, we generated a set of 250 000 time series from process (3). For every time
series, p* and p have been calculated. The sample means, (5« sim and (5 sim,
and the sample standard deviations, 04+ sim and o, sim, over the simulations
are listed in Table 1. Therein, our theoretical values—from (12), (15), (23)
and (24)—are included. In case of the means, these are additionally splitted
into terms o< (n — 1)~2 and terms of lower order. Also the theoretical values
from White’s (1961) formula, herein (25) and (26), are listed.

We further investigated whether the distribution of p* approaches Gaus-
sianity as fast as that of p. Fig. 1 shows histograms of p*, respectively p,
from the first simulation experiment in comparison with Gaussian distribu-
tions N (fpr im> Tar sim)> Tespectively N (s ms 05 sim)-

In the second simulation experiment (Fig. 2), formulas (12) versus (25)
and (15) versus (26) are examined over the entire range of p, with particular
interest on p large. We plot the negative bias, p — E(p), and y/var(p). For
each combination of p and n, the number of simulated time series after (3)
is 250 000.

The error due to the limited number of simulations is small enough for
not influencing any intended comparison.

4 Results and discussion

The first simulation experiment (Table 1) confirms, over a broad range of
p and n, that p* has a larger bias and a larger variance, respectively, than p.

In general, the deviations between the theoretical results and the simula-
tion results decrease with n increased, as is to be expected.

For any combination of p and n listed in Table 1, our terms o (n—1)"2 in
(15), respectively (24), bring these theoretical results closer to the simulation
results, with the exception of E(p) for p = 0.9 and n = 800 where the
simulation noise prevents that comparison. For p large, respectively n small,
these second order terms contribute heavier.

The frequency distribution of p* (Fig. 1) has a similar shape as that of
p. It is shifted to smaller values against that and also broader, reflecting the
larger negative bias, respectively the larger variance. The functional form
of the distribution of p is approximately the Leipnik distribution, which is
heavier skewed for p large and tends to Gaussianity with n increased. Both
estimators seem to approach Gaussianity equally fast (Fig. 1).

The second simulation experiment (Fig. 2) compares White’s (1961) the-
oretical results for p, (25) and (26), with ours, (12) and (15). It shows that
his are better performing up to a certain value of p.

Above, our formulas describe better the simulation, particularly, the de-



cline to zero negative bias, respectively zero variance, as p approaches unity.
The decline to zero negative bias is caused by the term oc (n — 1)72 in (15).
Those declines are reasonable, since for p = 1 all time series points have
equal value and ¢ = v in (4).

For small p, his formulas perform better since they are more accurate
with respect to powers of (1/n) than ours. For larger p his approximation
becomes less accurate. In particular, for n > 3 and p > 0, p — E(p);, cannot
become zero. Forn > 10, d%(p — E(p)yy) cannot become negative. Forn > 8,
var(p)y, cannot become zero. That means, for those cases White’s (1961)
formulas cannot produce the decline to zero negative bias and zero variance,
respectively.

The fact that Bartlett’s (1946) formula for the variance, (13), describes
the simulation better than (12) for p — 0, is regarded as spurious.

These results mean that the expansion formulas for var(p) and E(p), (5)
and (14), respectively, are sufficient to derive the principal behaviours for
p — 1. In case of the mean, however, no further approximation is allowed
which would lead to the term oc (n — 1)~2 in (15) be neglected.

5 Conclusions

1. In case of the stationary AR(1) process (3) with known mean, the new
estimator, p*, has a larger negative bias and a larger variance than the
old estimator, p. Its distribution tends to Gaussianity about equally
fast.

2. Our formula (15) for E(p) describes the expected decline to zero nega-
tive bias for p — 1.

3. The formula (12) for var(p) describes the expected decline to zero vari-
ance for p — 1.

4. The second order Taylor expansion of a ratio is sufficient to derive
these two principal behaviours for p — 1, if no further approximations
are made. This condition could be fulfilled since we had concentrated
ourselves on the lag-1 estimator and process (3).

5. For unknown mean of the process, it is more complicated to derive the
equations with the same accuracy.
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Appendix

We assume that ¢, is drawn from a standard Gaussian distribution with
serial correlations p,;. We derive (16) by means of the moment generating
function. Write

COV<62€a+s7€g€b+s+t) = E(62€a+s€§€b+s+t) - E(€2€a+s)E(€§€b+s+t>

_ 3
- E(€a€a+s€b6b+s+t) - 9psps+t'

Now, E(€3¢€, €€ 54¢) is the coefficient of (¢} ¢,t5¢,)/(3!113!1!) in the mo-

a-a+s
ment generating function

4
(t17t27t3’t4 = exp ng A0/ B
i=1j=1

with
01y = Ogp = 033 = Oyy = 1,
O12 = 021 = Pss
013 = 031 = Po—as
014 = 041 = Po—a+ts+ts
023 = 032 = Pp—q—s>
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O94 = 040 = Pp_qtt>
O34 = 043 = Pstt-

Terms o (3 tyt5t,) in m(ty,t,,t5,t,) can only be within the fourth order of
the series expansion of the exponential function, i. e., within

1 1 4 4 4

further restricting, within

1
@(t% + 15+ 200t t, + 2055t

+ 20,4ty + 2055t0ts + 205t0t, + 205,t5t,)",

further restricting, within

1
@(4 Olstits + 2815 + doptity + doytity + doytity + dogtityty

+ Aoy titot, + 4oy titst, + 4ottty + dogt ity + 4oyt tat,

+ 4 ogstols + 4oy totat, + dogtat, + 80,505ttty + 801500t
+ 80,903t totst, + 8030, titst, + 80,300t tols + 80,300t totst,
+8013034t1t:2’>t4 + 8014055t Tot5t, + 8023034t2t§t4)2-

Finally, these terms are

@(2 A ottits - 8 00y titatsty + 2 A0t 801300 titytsty

+ 2 A aatits - 80,005t totsty + 2 217t - 8019034t tot sty

+ 228315 - 80 509t totst, + 2+ 21515 - 8 0,005t ot sty

+ 2 datity - dogtat, + 2-dotity - doytatst,

+ 2 dotity - 8 OgsOgutotat, + 240 tot, - 40ystyts

+ 2 A oggtitoty - Aoy titity + 2 doytityts - 801305,t 5L,

+ 2 dogtitot, - dostits + 2-dogtitst, - 4ot tots

+ 2 dogtitsty - 8013005t tat5 + 2 doptityts - 803014t Tt5t,
+ 2 4ot ts - 80,0ttty + 240ttty - 80,05ttty

+2-8 ‘712‘71375%752753 -8 ‘713‘734t1t§t4 +2-8 ‘713‘71475%753754 -8 013023t1t2t§>-
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Thus, we find

E(€a€ats€hehrats) 3!2!81!1!(96 019034 + 9601305, + 96014093
+ 192050301, + 1920305305,
+19201,07305, + 19207307409
+ 64 07304,).
This gives the final result
COV(€a€atsr Ghisst) = IPbaPooare T 9 Pyarstt Pooas

+ 18 Ps Py—a pb—a+s+t + 18 Po—a Po—a—s ps—i—t
+ 18 Ps pgfa ps+t + 18 sza pb7a+s+t Po—a—s
+ 6 pg—a pb—a-‘rt‘

It should be noted that this result has been checked using the joint cumulant
of order eight, in my assessment without less effort.
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Figure 1: First simulation experiment (cf. Table 1). Histograms of p*

(thick line), respectively p (thin line), compared with Gaussian distributions
N( 0% oim) (heavy line), respectively N (i; i, 03 gim) (light line). The

luﬁ* stms Y p* sim

number of histogram classes follows Scott (1979).
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Figure 1: (Continued)
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Figure 1: (Continued)
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Figure 1: (Continued)
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Figure 1: (Continued)
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Figure 2: Second simulation experiment. Above: negative bias, below:
standard deviation. Simulation results (dots). Theoretical result, our for-

mula, (12) and (15), respectively, (heavy line). Theoretical result, White’s
(1961) formula, (25) and (26), respectively, (light line).
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Figure 2: (Continued)
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Figure 2: (Continued)
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