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a b s t r a c t

The detection of periodic fluctuations is important in the quest for a deeper understanding of the drivers
of past climates in the interests of being better able to understand the climate changes which are likely in
the decades to come. Paleoclimatological information derived from natural archives is typically
accompanied by chronological uncertainty and variable temporal resolution, both of which complicate
the analysis of their time series and both are often ignored. This has, however, changed in recent years
with the development of statistical tools supporting, e.g. spectral analysis tasks, which aim to take these
problems into account. In cases where the original data is no longer available, it may not be possible to
assess the reliability of published reports of periods detected. In this study we aim to test/model whether
or not a signal for a given period can be robustly detected from a sedimentary proxy record considering
its mean sampling resolution and degree of chronological uncertainty. To achieve this aim, annually
sampled time series free of gaps and timescale error were modeled with white or red noise, resampled in
a controlled way to simulate different time resolutions with timescale uncertainty, ultimately mimicking
a real-life sedimentary record. In fact, an ensemble of potential timescales was retrieved, and their
spectral characteristics explored. It was found that: (i) although sampling frequency (i.e. temporal
spacing) is limiting from the side of the smallest-period, (ii) at higher mean sampling resolutions, it can
ameliorate the detectability of periodic signals even in the presence of timescale error; furthermore, (iii)
the increase in mean sampling resolution is less influential in an autocorrelated time series, since more
information is retained due to the phenomenon of persistence. An online tool called CUSP was also
developed, which gives a suggestion whether a given period can be considered to be present in a robust
way utilizing our test results.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Natural archives (e.g. speleothems, lake- and ocean sediments)
are globally distributed and preserve information about the envi-
ronmental conditions that prevailed during their formation, thus
providing vital information on past climate(s) (Bradley, 1999). As
d Spectral Peaks.
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such, these archives are valuable for intra- and intercontinental
assessment of past global changes and allow the investigation of
paleoclimatic conditions and their variability (Sorooshian and
Martinson, 1995; Wefer et al., 1999). One of the key tools in
exploring the climate signal is spectral analysis (Trauth, 2021; Yiou
et al., 1996). This can improve the prediction of climatological
changes and provide information crucial to the understanding of
the relationship between driving forces and the changes they
induce, for example, via cross power spectral density analysis (Kunz
et al., 2020). Paleoclimatological information (both pristine proxies
and inferred reconstructions) derived from sedimentary records is,
however, typically accompanied by variable temporal resolution
and timescale error complicating time series analysis (Bradley,
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1999; Mudelsee, 2014).
Quaternary paleoclimatic archives can be accurately dated using

radiometric methods and/or lamina counting (Walker, 2005). The
age-depth relationship can be determined for the sequence and
described with the use of age-depth models constructed with
different statistical methods (Trachsel and Telford, 2016). Special
efforts are made (e.g. Blaauw and Christen, 2011; Breitenbach et al.,
2012; Hercman and Pawlak, 2012) to improve ‘uncertainty aware’
age-depth modeling.

The random and systematic error of the dating method is
inevitably propagated onto the age-depth model. While a system-
atic error in the form of a temporal shift is a critical issue in (i) the
evaluation of correlations with other (independently dated) re-
cords (Franke and Donner, 2019) or (ii) the estimation of a lead-lag
relationship (Hatvani et al., 2018; Mudelsee, 2001), the analysis of
spectra is obviously not influenced by the presence of a time shift.
Hence, we assume that systematic dating errors do not interfere
with the spectral assessment techniques studied here to such an
extent that would render the comparison of the spectra meaning-
less. In other words, the present study focuses on the effects of
random uncertainty.

This is why the development of techniques capable of evaluating
the relationship between series of data taking into account un-
certainties represents an important task for the paleoclimate
community if full advantage is to be taken of paleoclimate records
(Haam and Huybers, 2010; Mudelsee et al., 2009). A task supple-
mentary to this is the development of tools to determine howmuch
the results are biased if the previously mentioned circumstances
are unaccounted for.

The uncertainties in the dating of proxy archives and variable
temporal resolution originating from continuous, but not linear
sedimentation may strongly bias the observed spectral character-
istics (Meyers et al., 2008; Zeeden et al., 2018). The development of
statistical tools accounting for chronological uncertainty is an
active topic (Amrhein, 2020; Franke and Donner, 2019; Zeeden
et al., 2018). In numerous cases, however, these phenomena are
ignored in the course of spectral analysis (Amrhein, 2020). Such
tools can usually be used for spectral analysis, as they are already
equipped to account for these complex circumstances, but their use
requires raw data sets and a knowledge of the size(s) of chrono-
logical uncertainties. These complicating circumstances have,
however, often been ignored, and if the original data are not
available, it is not possible to assess the reliability of the periods
detected as reported in publications, even with the use of tools
capable of the correct handling of such tasks, for example, Geo-
ChronR (McKay et al., 2021) in R, Acycle (Li et al., 2019) in MATLAB.
Nevertheless, it is of vital importance that information on whether
the documented period can be considered robustly present in the
studied record under the given circumstances (chronological un-
certainty, mean sample resolution).

Originally, “robust” is a technical term from statistical literature
(Box, 1953), attesting to the fact that a data-analytical method gives
reliable results even in the presence of violations of the assump-
tions made in the course of the analysis. Hence, one may call a
method, or a result obtained using a particular approach, robust
against timescale uncertainties of a certain size.

The present study aims to fill this niche by testing whether a
given period can be considered to be present in a robust way in a
time series if the mean chronological uncertainty and mean sam-
pling resolution (i.e. temporal spacing) are taken into consider-
ation. This is done by modeling the spectral bias caused by
timescale error on simulated time series resembling the charac-
teristics of real-life sedimentary proxy records. The model forms
the basis of an online tool called CUSP, short for Chronological
Uncertainty and Spectral Peaks, which gives a suggestionwhether a
2

given period can be considered to be present in a robust way. It is
expected that the detectability of a periodic signal is (i) degraded
with the increase of chronological uncertainty and (ii) increases
with higher sapling resolution.

Section 2 describes the derivation of the modeled periodic time
series with chronological uncertainty and different sampling res-
olution and the methodology proposed for the investigation of the
spectral bias caused by these. Section 3 presents the results and
shows the practical applicability to real-life examples and an online
tool derived from the model. Section 4 provides an outlook
describing the possible future perspectives and possible de-
velopments of the model. Section 5 summarizes the novelty of the
model presented in the study and concludes the new findings.
Finally, Section 6 gives the availability of the software developed
within the framework of the research.
2. Materials and methods

2.1. Modeled periodic time series with chronological uncertainty
and different mean sampling resolution

The main steps in deriving the time series mimicking real-life
sedimentary records were to derive single-period time series,
both with white and red noise (Part 1), at the same time derive a
simulated ‘time-step’-depth scale with timescale uncertainty (Part
2) and match them together based on their ‘time-step’ number
(Part 3). Lastly, the time series are randomly rarefied in a controlled
way (Part 4) (Fig. 1); this procedure is then repeated 1000 times to
generate an ensemble.

The procedure of deriving the time series mimicking a sedi-
mentary record can be formalized as follows:

Part 1: An undisturbed time scale was taken, defined as: T(i),
i ¼ 1, …, 7500, so T(i) are evenly spaced with a spacing equal to
'time-step'.

Part 1.2: Sinusoidal signals were generated as Xj
sinðiÞ ¼ A�

sin
�
2p 1

Pj TðiÞ
�

where A ¼ 40 and Pj is an element of

f25; 50; 75; 100; 125; 150; 175; 200; 250; 300g and j is the
index.

Part 1.3: White and red noise series were generated for each
sinusoidal signal (Fig. 2).

Part 1.3.1:White noise 4j
whiteðiÞwas generated as a set of normal

distributed Nð0;1Þ random variates (Eq. (1))

4
j
whiteðiÞ ¼ εNð0;1ÞðiÞ; i ¼ 1; :::; 7500: (1)

Part 1.3.2: Red noise 4
j
red ðiÞ was generated using a random

standard normal variable, and a temporally autocorrelated variable
(Eq. (2)):

4
j
redð1Þ ¼ εNð0;1Þð1Þ; i ¼ 2; :::; 7500: (2)

4
j
redðiÞ¼ a�4

j
redði�1Þþ εNð0;1�a2ÞðiÞ; :::: i¼2; :::: 7;500

For red noise, the lag-1 coefficient a¼ 0.5, which is considered a
conservative value in the characterization and reflection of the
persistence characteristics of natural records (Mudelsee, 2014; von
Storch et al., 2009); regarding the random innovation, one uses 1�
a2, since then the process is stationary (i.e., constant mean and
constant variance); for further details see Mudelsee (2014): Section
2.1.1 therein.

Part 1.4: Composites of noisy time series were generated for the
white- and red-noise models (Eqs. (3) and (4)) scaling the noise



Fig. 1. Flowchart illustrating the construction of periodic signals. Part 1: time series with an implemented periodic signal (black line), white noise (shown, for visibility, as the
orange line) and red noise (red line). Part 2: Creating different time scales. Black dots represent randomly selected five depths from a perfect time scale and the red dots the chosen
value retrieved randomly from the normal distributions' bell curves, while the red line indicates the best fit linear model. Part 3: Matching the timescales to the noisy periodic
series, Part 4: Rarefying the data to obtain the unevenly spaced jittered time series. Red line represents the time series, and the black dots are the actually used values. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 2. Periodic time series showing 3000 steps (with an undisturbed timescale) with an implemented periodic signal (f ¼ 0.005 time step�1) (black line) and white noise (shown,
for visibility, as the orange line) and red noise (red line). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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series (shown in Part 3) with 0:333� VARðXj
sinðiÞÞ:

Xj
whiteðiÞ¼Xj

sinðiÞ þ 0:333� VAR
�
Xj
sinðiÞ

�
� 4

j
whiteðiÞ (3)

Xj
redðiÞ ¼ Xj

sinðiÞ þ 0:333� VAR
�
Xj
sinðiÞ

�
� 4

j
redðiÞ: (4)

In the following calculations, only the first n elements will be
used from the periodic time series where:
3

n¼
�
3000; P <150
P � 25; P � 150 :

Part 2: A series of steps was generated, Z(i), i ¼ 1, ..., n; the steps
were considered to be distances from the top (step 1) to bottom
(step n) of a sedimentary sequence. Out of these five depths were
selected (i.e. top, bottom, and three additional randomly chosen
depth in between) to serve as dating locations, as in the process of
tie-point modeling, where the aim is to estimate ages, along with
their uncertainties, at multiple depths downcore (McKay et al.,
2021). Then normal distributions were derived for all five dating
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locations with the mean of the distribution being equal to the
numeric value of the depth itself. The standard deviation of the
normal distributions was set to half of the predefined degree of
chronological uncertainty (Table 1) for the sake of reproducibility.

A value was retrieved randomly from the five normal distribu-
tions to serve as the age at the chosen depth. Only ages older than
any previous were accepted. Model dates for z(i) were retrieved
from the best fit linear model with the aim of mimicking a distorted
timescale:

~TðiÞ ¼ i ¼ 1; :::; n: (5)

The procedurewas repeated 1000 times for each combination of
j and noise:

~T
s
j;white ðiÞ and ~T

s
j;red ðiÞ where s¼1; :::; 1000; i ¼ 1; :::;n (6)

these ensembles served to mimic the chronological uncertainty
(Unc).

Part 3: Timescales were matched to the noisy periodic series
based on ‘time-step’ number:

n
~T
s
j;white ðiÞ;Xj

whiteðiÞ
o
and

n
~T
s
j;red ðiÞ;Xj

redðiÞ
o
: (7)

Altogether 20 periodic time series were assessed, each with
1000 different simulated time scales for both red- and white noise
models.

Part 4: All of the time series were rarefied/resampled with the
difference in temporal spacing between the selected data points -
mean sampling resolution (MSR) - spanning from five steps to a
maximum relative to the implanted periods (Table 1); for an
example see Fig. 3. In this way, MSR represents the number of time
steps which could be yr or kyrs for example.

Technically, MRS and Unc were relativized to the implanted
period (P) in each set, in which the minimum and the maximum
MSR is 5 and P=2:5; respectively, while Unc varies between P= 5 and
P� 4, resulting in 1786 combinations (Table 1). The increment was
5 and 10 steps for MSR and Unc respectively up to P ¼ 125. For
larger values, according to preliminary assessment, the increment
was increased to save computational resources without losing in-
formation (Table 1).
2.2. Spectral analysis and evaluation

The spectral bias caused by the chronological uncertainty and
uneven spacing was assessed by determining the period with the
highest power (peak period) from the original unmodified record
with no chronological uncertainty and even sampling (MSR ¼ 1
time step per sample), and the modified ones (MSR >1) using
REDFIT (Schulz andMudelsee, 2002). The shift in the location of the
Table 1
Spectral characteristics of the time series created (implanted period) and the
resampling criteria: Mean sampling resolution (MSR) and age uncertainty (Unc).

Period (P) MSR (from, to, increment) Unc (from, to, increment)

25 5, 10 (P=2:5), 5 5 (P=5), 100 (P� 4), 10
50 5, 20, 5 10, 200, 10
75 5, 30, 5 15, 300, 10
100 5, 40, 5 20, 400, 10
125 5, 50, 5 25, 500, 10
150 5, 60, 5 30, 600, 30
175 5, 70, 13 35, 700, 35
200 5, 80, 15 40, 800, 40
250 5, 100, 19 50, 1000, 50
300 5, 120, 23 60, 1200, 60

4

peak period in the modified periodic time series resembling a
sedimentary record was compared to the known location of the
peak period in the unmodified time series. In the case of any given
Unc-and-MSR combination, the spectral characteristics of all 1000
records from the REDFIT ensemble spectra were evaluated and
compared to that of the unmodified one. The number of cases was
counted when the shift in the peak period was <5% of the
implanted period out of the 1000 cases (e.g. Fig. 4), in other words it
was within the chosen tolerance interval ranging from 0:95 � P to
1:05 � P. The percentage of well detected significant cycles within
the tolerance interval are referred to as the success rate (sr), while
1-sr accounts for the false positives and the false negatives together.

Because single-period datasets are used, aliasing is avoided, thus
there is no source of additional false positives to occur than the
ones described above. In addition, MSR was chosen in such a way
that the upper bound of the ‘Nyquist frequency’ (Blackman and
Tukey, 1958) would not go above the chosen period (Table 1).

Specifically, REDFIT determined if the powers of the time series’
LombeScargleeFourier transform periodograms were significant
against red noise background from a first-order autoregressive
process. A Welch I window with two overlapping (50%) segments
was chosen, the oversampling parameter was set as ofac ¼ 24, the
highest frequency factor was set as hifac¼ 1, while the number of
Monte Carlo simulations (nsim) to obtain the significance levels
was chosen to be 1000, similar to real life applications with sedi-
mentary proxy records (Hatvani et al., 2018; Holzk€amper et al.,
2004; Neff et al., 2001). The red-noise boundary was estimated to
be equal to the bias-corrected 90% chi-squared limit of a fitted
AR(1) process. It could have also been a viable approach to use a
power-law model to describe background climate variability as in
e.g. Huybers and Curry (2006), Pelletier (1998), Vyushin and
Kushner (2009). However, in practice it does not make a great
change (over the major part of the frequency interval) whether
AR(1) or power-law are applied, see Mudelsee (2014): Section 2.5.2
therein. Moreover, in spectrum estimation (and many more other
test situations) the preference is for significance, not power
(Mudelsee, 2014; Priestley, 1981).

As a final step, using weighted multiple regression surfaces of
different e up to the third - degrees were fitted on the combina-
tions of the Unc e MSR - Period values passing through the origin
centering on sr ¼ 95%. This was achieved by subjecting the data to
inverse distance weighting (w) (Eq. (8))

wi ¼
�
1; sr ¼ 95
1=j95� srj; srs95 ; i ¼ 1; 2; …; 1786 ðsee Table 1Þ

(8)

The goodness of the different order fits was evaluated using
Bayesian information criterion (BIC; Priestley (1981), adjusted R2

(adj. R2) and root mean square error (RMSE).
The intention was to provide an empirical approximation at a

confidence level of 95%. In practical terms, any detected period that
is above the value of the plane for a given Unc e MSR pair can be
considered to be robustly detectable at this level of confidence (see
later, Fig. 5).

All computations were done in R (R Core Team, 2019), using the
redfit() function of the dplR package (Bunn, 2008), and with the
scripts written by the authors.
3. Results and discussion

The assessment of spectral ensembles indicated that with an
increasing MSR (i.e. increasingly rarefied time series), frequency
uncertainty also increases (Fig. 4), a result in accordance with the
observations obtained in an analysis consisting of the application of



Fig. 3. Illustration of the unevenly spaced characteristic of synthetic time series. Continuous- (red hairline) and selected data points (black dots) for the white noise A) and red noise
B) time series with the corresponding histograms (right panels) showing the difference in temporal spacing between the selected data points (see Part 4). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Monte Carlo simulations with predefined spectral properties and
timescale error models (Mudelsee et al., 2009). Additionally, the
smallest robustly detectable period increases with an increasing
MSR (Fig. 4), a phenomenon analogous to the Nyquist frequency
under equidistant sampling (Blackman and Tukey, 1958).

To obtain a more in-depth picture on how the robustly detect-
able periods vary with Unc and MSR, surfaces of different order
were fitted to the sr values, and their fit statistics evaluated
(Table A1) to see which approximates the 95% sr the best (see
Section 2.2). BIC and adj. R2 increased towards higher orders with a
practically negligible magnitude between the different orders. In
the meanwhile, the increase in the proportion of explained vari-
ance was continuous, with adj. R2 > 0.91 for the linear model
already (Table A1). Therefore, to avoid unnecessary overfitting - see
A1 and Hawkins (2004) - the linear model was chosen to indicate
the sr ¼ 95% threshold (Table A1).

In the white-noise model the robustly detectable period de-
pends ever-more steeply on MSR as Unc increases, in the red-noise
model this dependence is far less pronounced (Fig. 5). One plausible
cause of this is the substantial difference in the persistence of the
model data. In an autocorrelated time series, rarefication is less
influential, due to the presence of persistence (Mudelsee, 2014),
and this is reflected in the less steep slope of the red-noise model
(Fig. 5b).

In terms of the primary research question(s), it was generally
observed for both models that the implanted periods become less
robustly detectable with increasing Unc (Mudelsee et al., 2009) and
increasing MSR. Moreover, the same periodic peak could be
detected robustly even at relatively higher Unc, when MSR was
relatively low, that is, the given sedimentary proxy record was
more frequently sampled. For example, in the case of Unc ¼ 600
time step and MSR ¼ 70 time step per sample, periods higher than
421 time steps and 430 time steps could be robustly detected in the
5

case of white- and red-noise models, respectively; at Unc ¼ 600
step and a much better MSR of 10 time step per sample, periods
could be robustly detected already from 350 steps and 375 time
steps upwards, respectively (Fig. 5).
3.1. Applications

We show the actual applicability of the CUSP model (specifically
the red noise one) employing environmental parameters recorded
in natural proxies with various spectral- and chronological char-
acteristics. Speleothems (Table 2) and marine sediments (Table 3)
were chosen from literature on the basis of having been the subject
of spectral analysis. Because sedimentary proxy records usually
display strong autocorrelation, in the following the red-noise
model will be used to evaluate the robustness of their pre-
determined spectral characteristics.
3.1.1. Sub-Milankovitch periodicities of Holocene records
Periods on the decadal to centennial scale are frequently re-

ported in paleoclimate studies concerning geochemical parame-
ters, for example, those of speleothems. The key chronological
characteristics of the speleothems relevant to the present work
were collected from their original chronologies (Unc and MSR) and
also on account of the fact that their alternative chronologies had
recently been recalculated by the SISAL working group (Comas-Bru
et al., 2020b). Of the recalculated chronologies, only variants using
Bayesian modeling - Bacon (Blaauw and Christen, 2011) and,
BChron (Haslett and Parnell, 2008) - were considered, because
these mainly improve the assessment of uncertainties of
ageedepth models (Trachsel and Telford, 2016) and outperform
classical ones by providing more realistic precision estimates,
including at low to average dating densities and are much more
robust against dating scatter and outliers (Blaauw et al., 2018).



Fig. 4. Illustration of spectral bias resulting from chronological uncertainty and decreased sampling resolution. REDFIT ensemble-spectra for the time series with a 150-step
implanted period and Unc ¼ 50 time step, MSR ¼ 10 time step per sample, 100% of the peak periods are within the 5% tolerance interval A), Unc ¼ 50, MSR ¼ 60, 100% within
the tolerance interval B), Unc ¼ 500 time step, MSR ¼ 10 time step per sample, 31% in the tolerance interval C) and Unc ¼ 500 time step, MSR ¼ 60 time step per sample and 30%
within the 5% tolerance interval D).

Fig. 5. Fitted linear surface indicating the critical level of robustly detectable periodic signals in the presence of chronological uncertainty and discontinuous sampling in the case of
an underlying white- A) and red-noise model B). The fitted surface approximates the 95% success rate (sr). The periods above the fitted surface can be considered as robustly
detectable at the given Unc and MSR values. The boxes on the surfaces indicate two pairs of examples on how the detectability increases with an increasing sampling resolution,
that is, smaller MSR. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Table 2
The chronological characteristics of environmental parameters recorded in speleothem d18O records. The chronological characteristics of the records were taken from the
original studies and the SISAL_v2 database. The last column indicates the periods documented in the original studies. Values shown in italics indicate that the periods found
can be taken as robustly present under the current chronological circumstances, while bold indicates that they cannot according to the ‘red noise’ CUSPmodel. In the case of the
DAN-D record there was a difference in the degree of robustness depending on the chronological model assessed; this is indicated in the first line and in the text.

Speleothem name Literature Interp age Bacon BChron Documented period(s) (yr)

MSR (yr sample�1) Unc (yrs) MSR Unc MSR Unc MSR Unc

DAN-D
(Berkelhammer et al., 2010)

0.5 (based on
supplement)

~12 0.5 22.3 0.5 42 NA NA ~90

Pink Panther
(Asmerom et al., 2007)

17 NA 17.8 NA 17.7 379 18 368 ~700, 128, 104, 86, 78, 65e68

A1
(Cosford et al., 2008)

~8 NA 8.1 Not
provided

NA NA 8.1 225 2656, 49, 30,24, 21, 20

MGY
(Yadava and Ramesh, 2007)

1.1 NA 1.1 7 NA (lamina
counted)

132, 21, 2.6 (unbiased power spectrum)

Table 3
The chronological characteristics of isotopic records from marine sediments. The penultimate column shows the periods documented in the original studies and the value in
bold indicates that the given period cannot be taken as robustly present under the current chronological circumstances according to the ‘red noise’ CUSP model.

Entity name MSR Unc Documented period(s) Timestep measured in

d18O PATCH record (RC11-120 & E49-18) (Hays et al., 1976) 3 ~9 106, 43, 24, 19 kyrs
d15N GeoB 7139-2 (De Pol-Holz et al., 2007) 83 1154 20000; ~220a yr

a The period was documented to surpass the critical 99.89% ‘false alarm’ level.
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In the case of the Dandak d18O record (DAN-D), a single statis-
tically significant (a ¼ 0:9) peak was documented around the 90 yr
cycle (Berkelhammer et al., 2010). The MSR ¼ 0.5 yr sample�1

calculated from the SISAL_v2 chronologies (Comas-Bru et al.,
2020a) of the DAN-D record is in perfect agreement with that in
the original study. The Unc archived along with the original chro-
nology is higher, and the Bacon-remodeled chronology even higher
(Table 2). The record has a strikingly good mean sampling resolu-
tion (MSR ¼ 0.5 yr sample�1) and a remarkably low degree of
chronological uncertainty, thus the ~90 yr period was proven to be
robustly detectable (Table 2). However, considering the Bacon
chronology, due to the higher modeled degree of chronological
uncertainty, the robustness of the same period is not confirmed
(Table 2). The observation that the robustness of detectability de-
pends on the chronological uncertainties, which vary from model
to model, indicates a need for caution: a requirement not to take
into account only one, but multiple realistic age-depth models and
consider those spectral peaks which are not specific to the unique
model approach.

In the case of the speleothem d18O record from the Pink Panther
Cave, theMSR documented in the SISAL_v2 databasewas as good as
in the original study (17 yr sample�1); no Unc was, however,
documented alongside this (Asmerom et al., 2007). Thus, the
SISAL_v2 chronologies had to be taken into account (Table 2) which
varied according to the methods applied. In the study of Asmerom
et al. (2007), numerous significant (a ¼ 0:9) spectral peaks were
recorded above the red noise background in the Pink Panther d18O
record. Although the MSR of the record was good, its degree of
chronological uncertainty was considerably higher (Unc >365 time
step) in all age-depth models. Thus, regardless of the method
applied, the periodic signals in the record below ~170 yrs cannot be
taken as being robustly present in the current chronological cir-
cumstances (Table 2). In the A1 speleothem record's d18O record
(Cosford et al., 2008), the MSR calculated from the SISAL_v2 data-
base was again similar to that of the original study (~8 yr
sample�1); once again, however, no Unc was documented along-
side this. Using the SISAL_v2 chronologies in a way similar to the
Pink Panther d18O record, only the relatively long period was found
to be robustly present in the A1 record (Table 2).

The MGY speleothem record's d18O record from the Akalagavi
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Cave was lamina-counted and had no documented chronological
uncertainty in its original study, and it was available in the SISAL_v2
database. Significant (a ¼ 0:95) spectral peaks were documented in
the original study (Yadava and Ramesh, 2007), of which the two
largest (132, and 21 yrs) proved to be robustly present, while the
smallest was not (Table 2). A general conclusion can be drawn that
with the exception of the lamina-counted MGY record and the
notably well dated DAN-D record d18O spectrum, in the case of the
other records only the relatively longer periods can be considered
as robustly present in the data (Table 2).

3.1.2. Milankovitch cycles of Pleistocene records
Multimillennial periodicities are frequently reported in paleo-

climate studies concerning the geochemical parameters of, for
example, marine sediments. As in the case of natural proxy records,
the key chronological characteristics are Unc and MSR, and it was
these which were collected from the original studies in order to
provide examples of the applicability of the proposed method on
the orbital scale.

For instance, the periodic signals in the d18O time series of the
combined PATCH record of two subantarctic deep-sea cores (RC11-
120 & E49-18) (Hays et al., 1976) were all found to be robustly
present since MSR and Unc were sufficiently small considering the
documented periods given in kyrs. In the meanwhile, the
higheresolution bulk sedimentary d15N data from the southern
edge of the presenteday oxygen minimum zone of the eastern
South Pacific -core GeoB 7139e2 (De Pol-Holz et al., 2007)- indi-
cated a periodic incursion of d15N in the orbital band (ca. 20 kyr),
although this was insignificant at the critical 99.89% ‘false alarm’

level. In addition, a significant ~220 yr period was also indicated in
the spectrum (Table 3).

Interestingly, with regard to the former period, the authors
could not “rule out that for longer time series, the ~20 ka cycle
indeed becomes significant”, thus they cautiously consider its re-
sults; yet the CUSP model found it robustly present in the signal.
The latter, ~220 yr period proved to be statistically significant (Fig. 6
in De Pol-Holz et al. (2007)), while it was not found to be robustly
present in the chronological circumstances in the record. This
supports the decision of De Pol-Holz et al. (2007) not to discuss this
~220 yr signal, which is possibly uncertain given the presence of



Table A1
Statistics of the surfaces fitted to the sr ¼ 95% values in the Unc-MSR-Period space.
Chosen model indicated with italics. N: number of points, BIC: Bayesian information
criterion, adj. R2: adjusted R2, RMSE: residual mean square error.

Red noise White noise

Degree 1 2 3 1 2 3
N 1786
BIC 22659 22373 22211 22599 22423 22238
adj. R2 0.935 0.945 0.95 0.911 0.92 0.929
RMSE 133.4 127.8 123.2 124.2 124.2 124.8
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this timescale error.
It should be noted that the “negative” examples presented in

Section 3.1 do not mean that these documented spectral peaks are
not statistically present in the data at a given confidence interval;
neither do they mean that such spectral characteristics could not
have been recorded by the original records. It only implies that at a
given sampling resolution (considered “insufficient”) and degree of
chronological uncertainty, the chance of spectral peak(s) flagged as
not robust appearing in the spectrum being spurious is 5%.

4. Outlook

In the future version(s) of CUSP the following developments are
planned that could further widen its applicability primarily by
varying key parameters such as: signal to noise ratio, AR(1) noise,
AR(1) parameter value, power-law exponents, age-depth models,
length of a series, etc.; and by applying multi-period signals. Thus,
CUSP should be then useful for many paleoclimatic communities
and those researchers working on instrumental and future
(modeled) data.

Further testing possibilities: establishing a proxy time series
from measured proxies and dating points using adequate age-
depth modeling software. Determining the memory and strength
of the white/red noise of this proxy time series (Mudelsee, 2002)
and use the derived parameters to construct sets of artificial time
series with different periods. This would provide estimates about
the robustness of periods using the same temporal characteristics
as the proxy time series under investigation.

5. Conclusions

In the present work an online tool has been introduced together
with an underlying model that helps researchers in the rapid
assessment of the robustness of spectral peaks against timescale
errors on the basis of documented mean sampling resolution and
degree of chronological uncertainty in the records.

Via modeling and real-world application, chronological uncer-
tainty was found to be the most limiting factor, and that therefore
higher sampling resolution can ameliorate the detectability of pe-
riodic signals even in the presence of timescale error. An increase in
mean sampling resolution was shown to be less influential in an
autocorrelated time series, since more information is retained, due
to the phenomenon of persistence. As the study demonstrates, if
underlying raw data are not provided, but the chronological char-
acteristics e such as mean sampling resolution and chronological
uncertainty e of a given sedimentary record are available, the
robustness of a documented periodic signal can be determined
with the use of the tool provided (see Sect. 6). Unfortunately, even
today, these characteristics are not always documented in the
respective studies.

6. Software availability short description

The CUSP online tool for determining the robust presence of a
spectral peak present at a given degree of chronological uncertainty
(Unc) andmean sampling resolution (MSR) is available here: http://
geochem.hu/CUSP/. The tool has been tested to work in all major
browsers.

In employing CUSP, a chronological uncertainty and mean
sampling resolution pair should be provided by the user, alongwith
a period that is planned to be evaluated. CUSP in turn, will yield (i)
the value of the threshold period which can still be robustly
detected and (ii) a suggestion as to whether the investigated period
can robustly be detected under the given chronological circum-
stances or not. Users can choose between the white and red noise
8

models, with red noise as the default, to better reflect the persis-
tence characteristics of natural records (Mudelsee, 2014; von Storch
et al., 2009).

As stated in Section 2.1, the present model results are universally
applicable to any temporal measurement unit, i.e. the measure-
ment unit of the time steps can be chosen to be for example, yr, or
kyr, as long as it is used uniformly in the case of all three parameters. If
“time step” is taken as “year” the presented model is applicable to
the exploration of the robustness of periodic signals on decadal to
centennial scales. However, if “time step” is taken as “kyrs” then
millennial (e.g. orbital) cycles can be investigated.

If the period sought for is <MSR� 2, then due to the Nyquist
cutoff frequency it cannot be evaluated (Press et al., 1996), thus the
following output is given by CUSP: “The given sampling rate is
probably insufficient to carry the period sought for”.
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When choosing the linear model over the higher degree ones, it
was taken into account that:

(i) a linear model seems already sufficiently describing the
explored process, adj. R2 > 0.9 and the difference between
the BIC values for the different degrees is ~1%. In the error
there was practically no difference in the case of the white
noise model, while in the case of red noise it decreased with
less than 5% (Table A1)

(ii) there is no evidence that to characterize the explored rela-
tionship, the complexity of a higher degree surface would be
required, on the contrary it may introduce nonexistent
complexity

(iii) if a higher degree surface is used than necessary, it would
violate parsimony, and overfitting has to be avoided in gen-
eral (Hawkins, 2004).
Table A2
Summary table of coefficients of the linear multiple regression. S.E.: standard error.
Since both white- and red noise models were forced to pass though the origin, their
intercept equals zero.

Coefficient Estimate S.E. t val. p

White noise polym(Unc, MSR)1.0 0.564 0.010 56.64 <2� 10�16

polym(Unc, MSR)0.1 1.182 0.049 24.2
Red noise polym(Unc, MSR)1.0 0.609 0.009 69.33

polym(Unc, MSR)0.1 0.924 0.044 20.89
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