Sub-Milankovitch climatic cycles in Holocene stalagmites from Sauerland, Germany

Stefan Niggemann a,b,*, Augusto Mangini c, Manfred Mudelsee d,1, Detlev K. Richter b, Georg Wurth b

a Dechenhöhlen und Cave Museum, Dechenhöhlen 5, D-58644 Iserlohn, Germany
b Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
c Heidelberger Akademie der Wissenschaften, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
d Institut für Meteorologie, Universität Leipzig, Stephanstr. 3, D-04103 Leipzig, Germany

Received 13 February 2003; received in revised form 7 August 2003; accepted 8 September 2003

Abstract

Calcitic stalagmites from caves in the Sauerland, Germany, prove the existence of sub-Milankovitch cycles in precipitation during the last 6000 yr. The δ¹⁸O record dated with Th/U is interpreted as an indicator of paleohumidity. Spectral analysis of δ¹⁸O from 6000 a BP up to the recent top of a stalagmite from the Atta cave yields statistically significant peaks at 1450, 117, 64 and 57 a. Additionally we find a good correlation of the stalagmite’s δ¹⁸O and Δ¹⁴C from European tree rings. The 1450 a cycle in the stalagmite probably is analogous to the pervasive millennial scale climate cycle described by Bond et al. [Science 278 (1997) 1257–1266; 294 (2001) 2130–2136] derived from the amount of ice rafted debris in deep sediments from the North Atlantic. Our results suggest that the centennial to millennial shifts observed in the North Atlantic are accompanied by synchronous shifts of the climate in Northern and Central Europe, which most probably can be attributed to solar irradiation variations.

O:UUB 2003 Elsevier B.V. All rights reserved.

Keywords: Holocene; stalagmite; δ¹⁸O record; paleohumidity; climatic cycle; Germany

1. Introduction

The study of deep sea sediments from the Northern Atlantic documents that the Earth’s climate may be very sensitive to extremely weak perturbations in the Sun’s energy output, not only on the decadal scale but also on centennial to millennial scales [2]. Very prominent features of the North Atlantic’s Holocene climate are recorded as a series of shifts of North Atlantic hydrology, when drift ice and cooler surface waters were repeatedly advected southwards and eastwards.
Calcitic stalagmites are excellent archives for ambient conditions and Th/U dating delivers a reliable chronology of the periods of stalagmite formation. Growth rates ranging from some microns to several hundred microns per year allow high temporal resolution.

Stalagmites from key localities, where periods of growth imply a shift of climatic boundaries, may be used as reliable climatic archives. For example, the growth periods of stalagmites indicate that local temperatures periodically exceeded a certain temperature threshold in the past. These ‘simpler’ features were successfully applied to localities in Alpine regions or in Northern Oman. In the Alps growth of stalagmites implies periodic lowering of the permafrost boundary [3-5]. In the desert it corresponds to periodic increase of precipitation in the past [6-8].

The signal of stable isotopes in calcitic stalagmites consists in principle of that of the ambient precipitation, and of the equilibrium fractionation during calcite formation, which is a function of the temperature in the cave. However, this signal may be heavily altered by kinetic processes (evaporation), as well as by addition of seepage water with a different isotopic composition. The unraveling of the oxygen isotopic signals in stalagmites is a well-known problem but, although much advance has been made in stable isotopes of speleothems since the work of Fantidis and Ehhalt [9], transforming the isotopic signal into an absolute temperature is most uncertain or nearly impossible. Nevertheless, the enrichment of heavier stable isotopes of the calcite may be used as an indicator of lower humidity in a cave due to less dripping activity caused by less precipitation [6,7,10]. A high-resolution profile of oxygen isotopes on a stalagmite from South Oman even shows the 11 yr solar cycle [8]. Drier periods then are recorded as maxima of δ18O together with maxima of δ13C. In the Hoti cave in Northern Oman peaks of δ18O ascribed to reduced precipitation have a high coherence with peaks of Δ14C, suggesting that the position of the ITCZ is influenced by solar inten-

Fig. 1. Map showing the Middle Devonian shelf–basin transition (diagonal line) and massive limestone occurrences (black areas) in the Rhenish Slate Mountains. Gray points are the localities of the B7 cave and the Atta cave. Map of the Atta cave with growth location of stalagmite AH-1.
sity (which is assumed to be the cause for the variability of $\Delta^{14}C$) [6,7]. A positive relationship between $\delta^{18}O$ and $\Delta^{14}C$ has also been recently reported in the B7 cave in Northwestern Germany [10] for a stalagmite that grew during the last 4000 yr, however at a much lower time resolution than in the samples from Northern Oman. A statistically significant correlation of tree ring $\Delta^{14}C$ and speleothem optical density luminescence (indicating annual lamination density) has also been described for a stalagmite from Iowa [11].

In this study we analyzed a stalagmite from the Atta cave, located some 60 km south of the B7 cave in Northwestern Germany. The purpose was to check if our preliminary results on stalagmites from the B7 cave [10] could be duplicated. Also, we wanted to achieve a better time resolution than in the B7 sample, and so to test if the centennial to millennial shifts observed in the North Atlantic by Bond et al. [1,2] are accompanied by synchronous shifts of the climate in Northern Europe. Also, the length of our stalagmite record allows an excellent testing of Bond cycles for a continental archive.

2. Sample location, methods and results

The Atta cave situated in the Bigge valley near Attendorn is the biggest cave in the Sauerland region and one of the biggest caves in Germany with a total length of 6700 m (Fig. 1). The karstic area consists of Middle Devonian massive limestone with atoll-like biothermal reef sediments above a biostromal base. About 80 caves, most of which are small, are documented in the Attendorn-Elspe-Double-Syncline [12]. The cave extends below the 308 m a.s.l. high Stürzenberg. The analyzed 61 cm long stalagmite, AH-1, was taken from a 5 m high fault orientated cave gallery, 3 m above the modern ground water table. No flooding of the stalagmite in recent times could be observed. The location of AH-1 is situated 50 m below the surface and over 100 m away from both the original and the artificial cave entrance representing real cave climate (> 98% humidity, constant temperature of 9.4°C). Although the gallery leads to the eastern part of the complex cave system nearly no air flow could be detected. The stalagmite grew on a 1 cm thin sinter layer and was fed by a small soda straw stalactite on the ceiling of the gallery. During a 10 month monitoring campaign (March 1997–January 1998) no interruption of dripping could be observed [13]. The dripping waters are saturated in respect of calcite [saturation index (SI): 0.26 ± 0.16; $n = 11$] so no dissolution occurs. The SI values range from 0.05 to 0.61. The highest values are observed during the winter season together with the highest dripping rates. Additionally, eight drip water samples at AH-1 were monthly taken for analyzing the oxygen isotopic composition. The mean value is -8.92 ± 0.2%o (SMOW). To detect the seasonal CO$_2$ changes for the cave air a monitoring campaign has just started.

The surface of the stalagmite is white and near the base brownish, only near the top is the color light gray, which is caused by dust particles
Table 1
Th/U ages

<table>
<thead>
<tr>
<th>Lab. No.</th>
<th>Name</th>
<th>Distance from top (cm)</th>
<th>$\delta^{238}U$ (corr.) (‰)</th>
<th>Conc. ^{238}U ± (µg g$^{-1}$)</th>
<th>Conc. ^{232}Th ± (ng g$^{-1}$)</th>
<th>Conc. ^{230}Th ± (fg g$^{-1}$)</th>
<th>Age (corr.) (ka)</th>
<th>± Age (uncorr.) (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1756</td>
<td>AH-1</td>
<td>2.0 ± 0.3</td>
<td>992.8</td>
<td>9.1</td>
<td>0.13087</td>
<td>0.00021</td>
<td>0.64121</td>
<td>0.0043</td>
</tr>
<tr>
<td>1757</td>
<td>AH-1</td>
<td>4.5 ± 0.3</td>
<td>960.8</td>
<td>6</td>
<td>0.17414</td>
<td>0.00021</td>
<td>0.0277</td>
<td>0.0002</td>
</tr>
<tr>
<td>1691</td>
<td>AH-1</td>
<td>10.2 ± 0.3</td>
<td>972.5</td>
<td>8.1</td>
<td>0.21043</td>
<td>0.00042</td>
<td>0.1824</td>
<td>0.0018</td>
</tr>
<tr>
<td>1956</td>
<td>AH-1</td>
<td>14.5 ± 0.3</td>
<td>1011.5</td>
<td>13.6</td>
<td>0.1598</td>
<td>0.00038</td>
<td>0.3164</td>
<td>0.003</td>
</tr>
<tr>
<td>1694</td>
<td>AH-1</td>
<td>19.3 ± 0.3</td>
<td>1030.1</td>
<td>8.2</td>
<td>0.14663</td>
<td>0.00029</td>
<td>0.17635</td>
<td>0.0072</td>
</tr>
<tr>
<td>1806</td>
<td>AH-1</td>
<td>25.7 ± 0.3</td>
<td>1034.8</td>
<td>13.2</td>
<td>0.16184</td>
<td>0.0005</td>
<td>< 0.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td>1957</td>
<td>AH-1</td>
<td>30.0 ± 0.3</td>
<td>1043.1</td>
<td>11.8</td>
<td>0.15235</td>
<td>0.00026</td>
<td>112.1</td>
<td>3.4</td>
</tr>
<tr>
<td>1695</td>
<td>AH-1</td>
<td>34.0 ± 0.3</td>
<td>1041.7</td>
<td>9.1</td>
<td>0.16348</td>
<td>0.00053</td>
<td>176.6</td>
<td>0.11</td>
</tr>
<tr>
<td>1758</td>
<td>AH-1</td>
<td>39.5 ± 0.3</td>
<td>1067.1</td>
<td>19.6</td>
<td>0.15543</td>
<td>0.00062</td>
<td>156.9</td>
<td>4.6</td>
</tr>
<tr>
<td>1958</td>
<td>AH-1</td>
<td>43.7 ± 0.3</td>
<td>1045.8</td>
<td>21.5</td>
<td>0.18547</td>
<td>0.00061</td>
<td>1077.1</td>
<td>0.081</td>
</tr>
<tr>
<td>1696</td>
<td>AH-1</td>
<td>48.2 ± 0.3</td>
<td>1040.8</td>
<td>6.4</td>
<td>0.1839</td>
<td>0.00037</td>
<td>1723</td>
<td>0.012</td>
</tr>
<tr>
<td>1759</td>
<td>AH-1</td>
<td>50.2 ± 0.3</td>
<td>1062.1</td>
<td>19.8</td>
<td>0.2049</td>
<td>0.001</td>
<td>717.7</td>
<td>0.006</td>
</tr>
<tr>
<td>1643</td>
<td>AH-1</td>
<td>55.3 ± 0.3</td>
<td>978.6</td>
<td>6.6</td>
<td>0.19711</td>
<td>0.00039</td>
<td>1470.7</td>
<td>0.057</td>
</tr>
</tbody>
</table>

Errors are quoted as 2σ standard deviations. The correction for the detrital contamination was performed applying the following three assumptions: (i) the detrital $^{238}U/^{232}Th$ activity ratios are close to the upper continental value taking the Pb isotope evolution into account (0.764, Th/U mass ratio of 4.1 in [17]); (ii) initial non-detrital ^{230}Th is equal to 0; and (iii) radioactive equilibrium exists between detrital ^{230}Th, ^{234}U and ^{238}U. Also listed in columns 14 and 15 are the uncorrected ages. Except for the sample from 2 cm distance from the top, the corrected ages are the same as the uncorrected ages within their limits of uncertainty.
brought in the cave by very slow air circulation and by visitors after the discovery and opening of the cave for tourists in 1907.

For stalagmites two distinct facies zones were described that contain five microfacies types depending on the amount of fluid inclusions [14,15]. This description applies also to AH-1 where dark compact facies with no or little porosity and white porous facies zones alternating in four different hierarchies lead to a macroscopically or microscopically visible light-dark layering pattern [13,16]. This pattern is recorded by a gray value analyzing procedure (Fig. 2 [13]) but between about 6 ka and 1 ka BP white porous microfacies are strongly dominating.

Thirteen TIMS Th/U ages reveal the growth pattern of the stalagmite (Table 1; Figs. 2 and 3). The growth rate in the basal part was about 30 μm/a. The uniform and relatively high growth rate of about 100 μm/a in the middle part, between 5400 and 860 a BP, is an advantage for constructing time series of geochemical and microfacial parameters. Near the top for the last 860 yr the growth rate again slows down to 20 μm/a. The transformation of the depth scale into a calibrated age scale was performed applying a constant growth rate between 1500 and 5500 yr. We use a linear regression model due to the excellent correlation coefficient ($r^2 = 0.98; n = 11$) without any outliers. The white porous facies in the middle section have grown three times faster than the dark compact layers at the base (> 5.5 ka BP) and the top (< 0.86 ka BP), which is in accordance with recently published data [13,18].

Three hundred and eighty-four samples for isotopic analyses (δ^{18}O, δ^{13}C) were taken with a mean distance of 1.5 mm at least in the white porous dominating middle and upper unit of the stalagmite. The temporal resolution in this part is about 15 yr. Additionally, five samples of the basal sinter layer on which the stalagmite has grown were isotopically analyzed. The δ^{18}O within the stalagmite ranges from -6.86 to $-4.99\%_o$ with a mean value of $-5.90 \pm 0.32\%_o$ and the δ^{13}C from $-6.83\%_o$ to $-3.20\%_o$ with a mean value of $-5.92 \pm 0.49\%_o (n = 384)$. As shown in Fig. 4, δ^{18}O and δ^{13}C correlate slightly ($r = 0.37$, CI = [0.27; 0.46], $n = 384$ where r is Pearson’s correlation coefficient, CI denotes the 95% bootstrap confidence interval for r [19] and n is the sample size). Hendy tests [20] along a single growth layer could not be realized due to the diffuse lamination of the stalagmite.

White porous facies are the result of fast growth rates caused by high supersaturation and/or evaporation with kinetic growth effects (e.g. frequent seasonally driven dripping interruptions).

There exists only a small correlation between gray values/facies types and δ^{18}O within the stalagmite profile ($r = 0.20$, CI = [0.10; 0.31], $n = 384$; cf. [19]) and the mean values of δ^{18}O for light porous and dark compact facies are the same. The basal sinter layer shows no deviation from the stalagmite oxygen isotopic range.
Spectral analysis for gray values, ^{18}O and ^{13}C was performed using the program REDFIT 3.5 [21]. The spectral variance of ^{18}O depicted in Fig. 5a a major peak at 1450 (1086–2186) yr that exceeds the 99% chi-squared limit of confidence. Other minor peaks are seen at 117 (114–120), 94 (92–96), 64 (63–65) and 57 (56–58) yr. The values in the parentheses represent the bandwidth interval. A 1450 a cycle is also detected in the gray value profile of the stalagmite (Fig. 5b). The period of 1450 a is contained in the 4000 yr record 2.7 times which is statistically sufficient [23,24].

3. Discussion

The growth rate has been rather constant at a value of about 100 µm/yr throughout the white porous interval from approximately 1500 to 5500 yr BP (Figs. 2 and 3). The average ^{18}O of the calcite in this section of AH-1 is $-6.0 \pm 0.32\%$, with peaks of ^{18}O reaching up to -5.2%. These values are close to the value of -5.87% in presently precipitated calcite on top of the stalagmite but largely exceed the expected ^{18}O value of -6.9 to -7.3% for calcite formed in equilibrium with the dripping water (ranging between -9.1% and -8.7% (SMOW) at the annual average temperature in the cave of 9.4°C).

Significantly higher ^{18}O of the calcite ($> +1\%$) had also been observed in stalagmite B7-7 from the B7 cave and in speleothems from other caves [10,13,25]. Also, it is interesting to note that in both AH-1 and in B7-7 the lowest isotopic values are at about -7%, closer to the expected equilibrium values for calcite at -7.3% (AH-1) and -6.5% (B7-7), respectively.

The white porous section between 5.5 and 1 ka BP with its constant high growth rate is composed of diffuse laminae probably developed during frequent dripping interruptions. This could result from evaporation in water films on the stalagmite’s surface [10]. The comparison of the drip waters with the calcite in the AH-1 sample confirms the general trend towards heavier values of ^{18}O in the calcite, probably due to periodic lowering of the humidity in the cave, which enhances evaporation. Thus, we exclude temperature as a major cause for the variability of ^{18}O, because the range of ^{18}O would correspond to unrealistic changes of temperature of more than 4°C.

The correlation of ^{18}O and ^{13}C (Fig. 4) gives evidence of periodic kinetic fractionation due to evaporation and fast degassing of CO$_2$ [20], presumably as a consequence of lower humidity in the caves in summer when evapotranspiration above the cave is high [13]. The monitoring shows that the SI of dripping waters in summer is lower than in winter [13] and we infer that the summer dripping waters are mainly composed of winter rainfall, when less CO$_2$ is produced in the soil above the cave. Periods of lower humidity in
summer become even more probable, when less precipitation from the Northern Atlantic is brought into Northern Germany in winter. In summary, we ascribe the observed kinetic fractionation to less supply of water during drier and colder winters when the water reservoir above the cave remained at a lower stand and the cave dried out more frequently in summer.

The fact that AH-1 shows a behavior of $\delta^{18}O$ with time in parts similar to that recorded in the B7-7 stalagmite, as shown in Fig. 6, suggests that periods of enhanced evaporation occurred on a regional scale, and are not a local phenomenon.

The spectral variance of the $\delta^{18}O$ and the gray value records (Fig. 5) shows a major peak at 1450 yr. This periodicity of 1450 yr is dominant in the stalagmite record and suggests that it had a climatic impact in Northern Europe. The 1450 a cycle most probably is identical to the 1470 yr Holocene cycle detected from ice rafted debris [hematite stained grains (HSG)] in North Atlantic sediment cores which is attributed to variations in solar irradiance [1,2]. Comparing the timing of the HSG with our $\delta^{18}O$ record there is at least for the interval between 1.5 and 5 ka BP a strong coincidence (Fig. 7).

The coherence between $\delta^{18}O$ of AH-1 and the tree ring $\Delta^{14}C$ is shown in Fig. 8a. The time scale for the $\delta^{18}O$ values was tuned to best fitting of
δ18O to the signal of Δ14C. The correlation of δ18O and Δ14C was calculated for the age interval between 1.58 and 5.51 ka BP by only slightly shifting the calendar scale within the limits allowed by the uncertainty of the Th/U ages as shown in Fig. 8b. Δ14C changes reflect solar forcing as shown by the correlation of Δ14C from tree rings and solar induced 10Be flux in ice cores with the marine parameter of HSG as indicator for IRD in North Atlantic sediment cores [2].

The peaks of δ18O in the stalagmites indicate sections where calcite formed during periods of lower humidity in the cave, probably because of drier winters. At present the amount of winter precipitation in Northern Europe is related to the intensity of the Northern Hemisphere annular mode (NAM). Periodically stronger indices of NAM enhance the intensity of westerlies, which yields milder and wetter winters in Northern Europe [26]. The good correlation between δ18O and Δ14C promptly suggests that the periods of enhanced evaporation have occurred synchronous to periods of maximum radiocarbon content in the atmosphere. If the increase of atmospheric Δ14C corresponds to a less intense solar activity resulting in higher cosmic irradiation, our results then suggest that periods of lower intensity of solar irradiation were probably accompanied by drier climate in Northern Europe. This would require a periodic shifting towards weaker NAM indices. These periods become apparent in the 1450 a cycle which is for the first time detected in a continental archive of the North Atlantic influenced climate zone of Central Europe. The other periodicities at 117 and 94 yr at lower confidence are close to periodicities of the tree ring Δ14C record of 126 and 89 yr [27], but more data are needed for a better accuracy on these minor signals.

4. Conclusions

The finding of the 1450 periodicity in the stalagmite AH-1 together with the coherency to Δ14C, which was also observed in stalagmite B7-7, strongly supports the conclusions of Bond [1,2] derived from the amount of ice rafted detritus in highly resolved sediments in the Northern Atlantic. Our results suggest that variability of the Sun did also have a major impact on the pattern of precipitation in Northern Europe during the Holocene.

Acknowledgements

We thank Rene Eichstädt (Heidelberger Academy of Sciences) for measuring the TIMS data. W. Böhmer (Director of the Attendorn Tropfsteinhöhle, Attendorn) generously allowed sampling of speleothems and water in the Atta cave. Elmar Hammerschmidt and our friends from the Speleogroup Letmathe e.V. put at our disposal the cave map and technical equipment. S.N. and D.K.R. thank the Deutsche Forschungsgemeinschaft for financial support (SPP change of the geo-biosphere during the last 15000 yr; Ri 216/15). [BARD]

References

