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Abstract
The standard approach to flood frequency analysis (FFA) fits mathematical func-
tions to sequences of historic flood data and extrapolates the tails of the distribution
to estimate the magnitude and likelihood of extreme floods. Here, we identify the
most exceptional floods in the United States as compared against other major
floods at the same location, and evaluate how the flood-of-record (Qmax) influences
FFA estimates. On average, floods-of-record are 20% larger by discharge than their
second-place counterparts (Q2), and 212 gages (7.3%) have Qmax:Q2 ratios greater
than two. There is no clear correspondence between the Qmax:Q2 ratio and median
instantaneous discharge, and exceptional floods do not become less likely with
time. Excluding Qmax from the FFA causes the median 100-year flood to decline
by −10.5%, the 200-year flood by −11.8%, and the 500-year flood by −13.4%.
Even when floods are modelled using a heavy tail distribution, the removal of Qmax

yields significantly “lighter” tails and underestimates the risk of large floods.
Despite the temporal extension of systematic hydrological observations in the
United States, FFA is still sensitive to the presence of extreme events within the
sample used to calculate the frequency curve.

KEYWORDS

flood frequency analysis, floods, heavy tail analysis, record floods, United States

1 | INTRODUCTION

Worldwide, flooding is the leading natural hazard that
affects humanity (Kellens, Terpstra, & De Maeyer, 2012).
Floods have been the costliest peril for the past 4 years run-
ning (2013–2016), and in 2016 economic losses due to
flooding were $62 billion (Aon Benfield, 2016). During the
past decade, on average floods have affected 87 million peo-
ple and caused nearly 6,000 deaths every year (Guha-Sapir,
Hoyois, & Below, 2016). Nearly all potential responses to
floods—including the construction of dams, levees, or diver-
sions, the implementation of insurance systems to compen-
sate victims, and land-use management—depend at least
partly on our judgement of the risk posed by future floods.
The most common tool used to evaluate those risks is flood
frequency analysis (FFA), which attempts to answer ques-
tions related to flood problems through the application of

probability principles. The standard approach to FFA fits
mathematical functions to sequences of historic flood data
and extrapolates the tails of the distribution to estimate the
magnitude and likelihood of extreme floods (England
Jr. et al., 2018; Klemeš, 1989; Mertz & Blöschl, 2008). Esti-
mates obtained from FFA are used to support decisions
regarding the design of individual flood mitigation projects
(Brooks & St. George, 2015; Clark, 1996) and are central to
most national and international schemes for hazard risk
assessments (Michel-Kerjan & Kunreuther, 2011; Porter &
Demeritt, 2012) and land-use planning (Dewan, Islam,
Kumamoto, & Nishigaki, 2007; Ganoulis, 2003).

The efficacy of the standard approach is usually tested
on the ability of its statistical model to fit the distribution of
observations (Kochanek et al., 2014; Rahman, Zaman, Had-
dad, El Adlouni, & Zhang, 2015) or to reproduce the proba-
bility of synthetic flood data generated by a known
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distribution (Rahman et al., 2015). But since their inception,
FFA methods have been known to struggle when used to
assess the risks of high-magnitude, low-frequency floods. In
one of the earliest attempts to apply objective estimation
methods to flood hydrology, Gumbel (1941) pointed out that
“[f]or the two or three extreme floods, the return periods are
based on a few observations, and consequently, the agree-
ment [between statistical theory and hydrological observa-
tion] is not very good.” The regional frequency approach
(Dalrymple, 1960; Hosking & Wallis, 1997) was developed
to circumvent the problem of estimating rare events from
short observational records, effectively trading space for
time by pooling streamflow data at the target site with data
from hydrologically similar gages elsewhere. But regional
flood frequency analysis (RFFA) can still perform poorly
when used to predict large, infrequent floods; across the
globe, discharge estimates of the 100-year flood derived
from RFFA have errors greater than 50% (A. Smith,
Sampson, & Bates, 2015). And since such events are rare in
practice, the uncertainty in estimated recurrence intervals
still increases substantially towards the upper end of the
flood frequency curve (Eychaner, 2015; Parkes & Demeritt,
2016). These results imply that, despite the progressive spa-
tial expansion and temporal extension of systematic hydro-
logical observations globally, the probability estimates
generated by FFA are still sensitive to the presence of spe-
cific extreme events within the sample used to calculate the
frequency curve (Parkes & Demeritt, 2016). Furthermore,
because FFA fits a parametric probability distribution to the
log-transformed observations (United States Geological Sur-
vey, 1982), the validity of that approach depends upon the
assumed distribution being a suitable match for the underly-
ing hydrological processes. A heavy-tail distribution—where
the probability of observing an extreme value equal to or
greater than a certain value, x, is proportional to x − α
(Resnick, 2007)—may therefore be a useful alternative to
standard FFA methods because its form is parametrically
less restricted and offers more distributional robustness.
Instead of assuming that floods follow a specific distribu-
tion, this alternative approach presupposes only that the tail
probability behaves as a power law, which can be described
by the heavy-tail index (α). Because heavy-tail distributions
also encompass other shapes applied commonly to extremes,
including the Generalised Extreme Value and Generalised
Pareto functions (Resnick, 2007), this test allows us to
examine whether our results are sensitive to the particular
choice of distribution. The α value can be applied to derive
return periods and other risk measures (Anderson &
Meerschaert, 1998; El Adlouni, Bobée, & Ouarda, 2008),
but its sensitivity to the presence of specific extreme events
has, however, not been analysed previously.

Here, we evaluate how a singular flood—the flood-of-
record (or maximum flood; Crippen & Bue, 1977; Vogel, -
Zafirakou-Koulouris, & Matalas, 2001)—affects the

estimates produced by the FFA approach recommended by
Bulletin 17B (United States Geological Survey, 1982). In
part, we focus on the flood-of-record because affected resi-
dents often identify the largest event they have experienced
as their most pressing concern, even if that flood occurred
decades ago (Lave & Lave, 1991), and as a result, the largest
known flood can have an outsized influence on flood mitiga-
tion decisions (St. George & Rannie, 2003). Drawing upon a
large set of long-term hydrological records from the United
States, we compare the flood-of-record at each gage against
other floods at the same location and identify those events
are most exceptional in comparison to high flows that came
either before or after. Next, we illustrate how these singular
events affect quantitative estimates of flood risk across the
country by conducting paired FFA and heavy-tail analyses
that either include or exclude the flood-of-record. Finally,
we show that, even though hydrological records from the
United States now span several decades or more, the issue
raised by Gumbel in the 1940s remains a challenge to flood-
risk assessment today.

2 | DATA AND METHODS

We obtained annual peak streamflow data from the
U.S. Geological Survey's National Water Information Sys-
tem (U.S. Geological Survey, 2016) from all streamgages in
the continental United States with more than 50 years of
observations, as well as the associated metadata for each
gage. For each streamflow record, any observations made
after the river was affected by regulation or diversion were
omitted from the analysis; this screening step also eliminated
all floods caused by upstream dam failure (including,
e.g., the South Fork Dam failure in 1889, and the Teton
Dam failure in 1976; Seed & Duncan, 1987; Katkins, Davis
Todd, Wojno, & Coleman, 2013). The length criterion was
applied a second time to ensure that each peak flow record
still retained at least 50 observations after the screening.
Overall, the final data set had peak flow records from 2,790
gages, had a median record length of 70 years, and included
flood observations made between CE 1773 and 2016.

For each gage, we identified the flood-of-record (the
largest flood by discharge; Qmax) and then computed the
ratio between the discharge of Qmax and that of the second
largest observed flood (Q2), which represents the “degree of
exceptionalness” exhibited by the largest known flood. In
order to determine the influence of the flood-of-record on
quantitative estimates of flood probability, for all records,
we conducted FFA twice, first using all flow data from that
gage and then repeating it after Qmax was excluded. In both
cases, the magnitude for three recurrence intervals (the 100-,
200-, and 500-year floods) were estimated after fitting the
flood observations with a Log Pearson III distribution
(United States Geological Survey, 1982). Flood frequencies
were calculated in the MATLAB® computing environment
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using code written by Jeff Burkey of King County's Depart-
ment of Natural Resources and Parks (Burkey, 2009). We
estimated the heavy-tail index for each gage record in the
same manner, first using all annual maxima and then repeat-
ing it after Qmax was excluded. Our heavy-tail index estima-
tor (Mudelsee & Bermejo, 2017) has been proven to be
accurate due to its usage of an optimal selector of the order
(i.e., the fraction of largest values to utilise for the estima-
tion). But because achieving a satisfactory level of accuracy
requires a large number of observations (100 or more years
of data), the heavy-tail index was estimated only on those
146 gages that satisfied the stricter length criterion.

3 | RESULTS AND DISCUSSION

Because the National Water Information System includes
flood information from historical evidence, there are
44 record floods that pre-date the installation of the nation's
first stream gage in 1889 (Frazer & Heckler, 1989). The ear-
liest flood-of-record occurred in 1791, when the Swannanoa
River in western North Carolina rose to a level that has still
not been equalled more than two centuries later (Tennessee
Valley Authority, 1963). Most record floods have been

observed during the last 50–60 years (Figure 1a), but
because this increase has followed the progressive growth of
the national hydrological monitoring network (Supporting
Information Figure S1), it should be regarded as the by-
product of expanded monitoring rather than reflecting a
trend towards bigger floods.

Record floods naturally cluster together geographically
(Figure 1b). During the top flood year of 1964, rivers
throughout the Central Pacific Coast set records, including
streams in Oregon, Idaho, northern California, southern
Washington, and small parts of western and northern
Nevada. Most of these floods were triggered by an atmo-
spheric river (also known as a “Pineapple Express”) that
made landfall on December 21 and 22, 1964 (Dettinger,
Ralph, Das, Neiman, & Cayan, 2011; Waananen, Harris, &
Williams, 1971), and the synchrony and magnitude of flood-
ing across the region caused this event to become known
locally as the “Thousand Year Flood” (Lucia, 1965). Earlier
that year, records were also set at gages in the southeastern
United States, including several exceptional floods in north-
ern Florida caused by Hurricane Dora (Frank, 1965). In
1972, nearly 100 gages measured record floods, most
located in Pennsylvania, New Jersey, and New York and
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FIGURE 1 Record floods in the continental United States. (a) Total number of record floods, by year, in the screened National Water Information System
database. (b) Maps showing the location of record floods for the six most exceptional years (highest number of record floods). Blue symbols represent gages
where record floods occurred in the specified year, while the grey symbols denote gages that were active but did not observe their flood-of-record. The six
annual maps are arranged from the greatest (upper left) to least number of record floods (lower right)
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caused by heavy rains associated with Hurricane Agnes
(Namais, 1972). The unprecedented 2011 floods were split
between the northeastern United States and the central
Plains. The former was a product of northward track of Hur-
ricane Irene along the Atlantic Seaboard (Avilia &
Cangialosi, 2011), while the latter were part of extensive
flooding in the Mississippi basin during April and May
(Goodwell et al., 2014), and included a record crest at Vicks-
burg, Mississippi (where the gage record extends back to
1897). Record-setting floods in 1996 were part of wide-
spread high water in Pennsylvania, Virginia, and West
Virginia due to intense rain and snowmelt runoff in January
(Leathers, Kluck, & Kroczynski, 1998), while at the other
end of the country, the Pacific Northwest saw flooding in
many of the region's major rivers (Colle & Mass, 2000),
most notably the Willamette River in Portland. Although the
Mississippi Flood of 1973 did reach a then-record stage at
St. Louis (Belt Jr., 1975) that was later eclipsed in 1993,
more than a dozen tributaries in the Illinois and Ohio river
basins had peak flows that still remain unequalled today.
Finally, in 1997, records were set in northern California dur-
ing the so-called New Year's Flooding (Galewsky & Sobel,
2005), in the northern Central Plains (including tributaries of
the Red River of the North; Todhunter, 2001), and in the
upper Ohio Basin (mainly in Kentucky; Hughey & Tobin,
2006). On the opposite end of the spectrum, since 1900,
there have only been 2 years without any record floods—
1924 and 1930—and both coincided with widespread
drought conditions (respectively, affecting the western
Pacific Coast and the southeastern United States; Shelton,
1977; Cook & Krusic, 2004).

Overall, floods-of-record are 20% larger by discharge
than their second-place counterparts (the median Qmax:Q2

ratio is 1.2; Figure S2). More than one fifth of all gages
(21.8%) have maximum floods that are more than one and a
half times the magnitude of Q2, and 212 gages (7.3%) have
Qmax:Q2 ratios greater than two. Although we might expect
“surprise” floods (i.e., floods that are much larger than all
others ever observed at the same gauge) to be more common
on small rivers, there is no clear correspondence between the
Qmax:Q2 ratio and median instantaneous discharge

(Figure S3a), although there are few instances of truly
exceptional floods (Qmax:Q2 ratios above 1.5) in larger rivers
(1,000 m3/s and up). Furthermore, having a long observa-
tional record does not mean that surprise floods are not pos-
sible. Prior analyses of individual gages in the United States
had shown that, as hydrological records become longer, the
uncertainty in the magnitude of the 50- or 100-year flood
decreases (Benson & Carter, 1973; Feaster, 2010). But
exceptional floods do not become less likely with time
(Figure S3b); even after a century of observations, it is still
possible to experience a flood that is substantially larger than
all others that have occurred on a given reach of river. Those
floods that have been least paralleled by other high flows at
the same location (high Qmax:Q2 ratios) are found mainly in
small watersheds with drainage areas below 10,000 km2

(Table 1). The most unprecedented flood in our network was
generated by Rayado Creek, near Cimarron, New Mexico,
on June 17, 1965. That flood, which had a discharge more
than 10 times larger than the second-biggest event in the
century-long record (255 m3/s compared to 24 m3/s),
destroyed several campsites but did not cause any injuries or
deaths. The remarkable 1969 Reedy Creek Flood in eastern
Virginia was caused by Hurricane Camille, a Category Five
hurricane (Schwartz, 1970), while exceptional floods on the
White River (Nebraska) and Prairie Dog Creek (Kansas)
were both the product of convective thunderstorms in early
summer. For bigger watersheds (drainage areas greater than
10,000 km2), most of the rivers with extremely high Qmax:
Q2 ratios (Table S1) are located in the Great Plains (includ-
ing gages in Iowa, Kansas, Montana, Nebraska, North
Dakota, and South Dakota). The 2008 Cedar River Flood
(J. A. Smith, Baeck, Villarini, Wright, & Krajewski, 2013)
happened 105 years after the gage at Cedar Rapids (Iowa)
was installed. Even with knowledge of a historical flood in
1851, the 2008 flood was still nearly twice as large as any
other flood on record, illustrating that even after more than a
century and a half of observations the river still held some
surprise.

How much do the results of FFA change when the flood-
of-record is omitted? As would be expected, in practically
all cases (8,367 out of 8,370), excluding Qmax causes the

TABLE 1 The most unparalleled floods on record in the United States

Site identification number Site name Drainage area (km2) Length of record (years) Date of record flood Qmax:Q2

7208500 Rayado Creek near Cimarron, NM 168 93 June 17, 1965 10.6

1674200 Reedy Creek near Dawn, VA 45 53 August 20, 1969 8.1

6444000 White River at Crawford, NE 811 62 May 10, 1991 7.8

6847900 Prairie Dog Creek above Keith Sebelius Lake, KS 1,528 54 May 23, 1953 7.4

10322980 Cole Creek near Palisade, NV 30 53 June 1983 (no date) 6.4

1475000 Mantua Creek at Pitman, NJ 16 62 September 1, 1940 6.3

6792000 Cedar River near Fullerton, NE 3,160 56 July 19, 1950 6.2

6847500 Sappa Creek near Stamford, NE 9,946 71 June 24, 1966 5.8

11084500 Fish Creek near Duarte, CA 16 59 January 25, 1969 5.8

2197190 McBean Creek at US 25, near McBean, GA 107 52 October 12, 1990 5.4
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estimated magnitude of floods with long recurrence intervals
to go down (Figure 2a). The effect is more pronounced for
larger and more rare events, with the median 100-year flood
declining by −10.5%, the 200-year flood by −11.8%, and
the 500-year flood by −13.4%. For roughly a quarter of all
gages, the estimated magnitude of the 500-year event is
reduced by 20% or more compared to the FFA estimate
obtained when Qmax is included. And, the more exceptional
the flood, the larger its weight in the FFA, especially upon
the higher portions of the curve (Figure 2b). To return again
to the case of Rayado Creek, if the 1965 flood-of-record
(which has an estimated return period of 2,550 years) was
not known, the estimated magnitude of the 100-year flood
would drop by 45%, the 200-year flood by 51%, and the

500-year flood by 58%). But even when the flood-of-record
is not quite so exceptional, the very largest flood still has
substantial weight within the FFA. For those more typical
gages where Qmax is “only” 20% larger than Q2, adding the
flood-of-record to the peak flow sequence still raises the esti-
mated magnitude of the 100-year flood by more than 10%.
Finally, what recurrence interval would be estimated for
Qmax itself? Because the 500-year flood often serves as an
upper limit for risk assessments in the United States and
other jurisdictions (Bell & Tobin, 2007; Ludy & Kondolf,
2012; Sauer, Thomas Jr., Stricker, & Wilson, 1983), it can
be used here as a benchmark to evaluate the likelihood of a
future flood just as large as the flood-of-record. In a quarter
of all cases, if Qmax was unknown, a flood with the same

FIGURE 2 Relative effect of excluding the flood-of-record from flood frequency analysis (FFA) conducted on long-term streamflow records from the
United States. (a) Violin plots showing the percent decrease (relative to FFA conducted on the complete flood sequence) in the magnitude of the 100-, 200-,
and 500-year flood at all gages. The horizontal white lines mark the median of each distribution. (b) Scatterplot comparing the decrease in flood magnitude to
the degree of exceptionalness of the flood-of-record (the Qmax:Q2 ratio). The lines are Lowess smoothing curves that follow the 100- (green), 200- (violet),
and 500-year floods (blue)
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magnitude would be assigned a recurrence interval greater
than 500 years. On the other hand, if Qmax is included in the
FFA, more than four times out of five, that event falls below
the 500-year threshold and would be considered as a rare but
plausible future threat.

We find that the results of the heavy-tail index estima-
tion are also sensitive to the omission of the flood-of-record.
For the 146 long gages (Figure 3), if the flood-of-record is
retained, the estimated values of α lie between a minimum
of 0.25 (strong heavy tail) and a maximum of 1.99 (close to
a normal distribution). The average equals 1.58 � 0.02
(one-sigma SE of the mean), which is in close agreement to
the value of 1.48 � 0.13 (one-sigma root-mean squared
error based on simulations) found for the 207-year long
record from the Elbe River, Germany (Mudelsee & Bermejo,
2017). When Qmax is omitted, its removal yields signifi-
cantly “lighter” tails (that is, larger α values) in nearly all
cases (143 out of 146), and the mean difference in alpha
(calculated in a paired manner) is 0.12 � 0.02 (one-sigma
SE of the mean of differences). Overall our α-tests demon-
strate that the smaller the tail probability, the larger the
effect. For example, consider an idealised example where

the true underlying distribution of the annual maxima is a
Generalised Extreme Value distribution with parameters
location 0, scale 1, and shape 1/α (Mudelsee, 2014) and the
gage record includes 100 annual flood observations. In that
case, removing Qmax would cause a true 100-year event to
have an estimated return period of 121 years, the 200-year
flood to shift to a 252-year event, and the 500-year flood to
be described as a 670-year flood. These findings of a signifi-
cant effect on the heavy-tail index is corroborated by a
Monte Carlo experiment, where 10,000 random series with a
stable distribution (Mudelsee & Bermejo, 2017), a pre-
scribed α = 1.5, and a sample size of 100 were generated.

4 | CONCLUSION

FFA is without question the most widely applied and influ-
ential tool used to make predictions about how often floods
will occur in the future and how severe they might
be. Hydrologists are well aware that FFA techniques are
most accurate when applied to floods with recurrence inter-
vals that are shorter than the duration of the available hydro-
logical record (Dalrymple, 1960; Eychaner, 2015). And
because extreme floods are rare and are usually too few to
constitute a sample adequate for statistical analysis
(Kochanek et al., 2014), at the upper end of the frequency
curve, as the recurrence interval increases so too does the
uncertainty of the estimate (Eychaner, 2015). Systematic
flood observations on American rivers now span multiple
decades (and in many cases, more than a century), but the
results produced by FFA are still sensitive to the influence
of the single largest flood on record. The flood-of-record has
little influence on risk estimates for smaller floods with short
return periods. But if decisions related to flood mitigation
demand information about the 100-, 200-, or 500-year flood,
then it is crucial to understand the largest or most rare events
that have been generated by the river. And even if the FFA
adopts statistical functions that are better able to model
extreme values, such as a heavy tailed distribution, our
results show it is still very difficult to gage the probability of
floods that are more severe than those previously observed.

Even several centuries of hydrological observations can
sometimes not be sufficient to anticipate the most excep-
tional floods. Eychaner (2015) described the 500-year
sequence of flood stage on the Danube River recorded at
Passau, Germany, and pointed out that, despite the extraordi-
nary length of these data, it is still difficult to estimate accu-
rately the magnitude of those floods with recurrence
intervals greater than 100 years. For that reason, he argued
that, for the very largest floods, knowing their maximum ele-
vation is more important than relying on a highly uncertain
estimate of their recurrence interval. In another study con-
ducted on the Elbe River in central Europe, Mudelsee,
Börngen, Tetzlaff, and Grünewald (2003) concluded that,
despite having more than two centuries of uninterrupted

STRONG NORMAL 
HEAVY TAIL DISTRIBUTION

Heavy-tail index (alpha)
0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.81.0 2.0

FIGURE 3 Floating bar chart illustrating the heavy-tail index values (α)
for gage records longer than 100 years (n = 146). For each gage, the left-
most position of the horizontal bar marks the α calculated from the full
hydrological record, while the right-most position shows the same metric
after Qmax is excluded from the analysis. The horizontal length represents
the α − difference for each gage, with either values either more normal
(blue) or having a heavier tail (red) if Qmax is removed
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daily streamflow measurements, it was still not possible to
quantify the magnitude of floods with return periods greater
than 100 years due to the inherent uncertainties. The same
limitation also appears to hold in general for gaged rivers in
the United States. For that reason, we recommend assess-
ments of flood risk should incorporate observation and/or
documentation by non-hydrologists, or natural recordings of
past floods interpreted by paleohydrologists whenever those
sources are available. Recurrence estimates for rare floods
are highly uncertain and are likely to remain so, even as
instrumental hydrological records become gradually longer.
Because of that limitation, we recommend that knowledge of
truly exceptional floods, whether obtained from direct
hydrological measurements, observation and/or documenta-
tion by non-hydrologists, or natural recordings of past floods
interpreted by paleohydrologists, must remain a priority for
research on hydrological extremes.
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