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Plio-/Pleistocene Climate Modeling Based on Oxygen
Isotope Time Series from Deep-Sea Sediment Cores:
The Grassberger-Procaccia Algorithm and Chaotic
Climate Systems’

Manfred Mudelsee? and Karl Stattegger’

The question whether paleoclimatic systems are governed by a small number of significant variables
(low-dimensional systems) is of importance for modeling such systems. As indicators for global
Plio-/Pleistocene climate variability, four marine, sedimentary oxygen isotope time series are ana-
lyzed with regard to their dimensionality using a modified Grassberger-Procaccia algorithm. An
artificial, low-dimensional chaotic time series (Hénon map) is included for the validation of the
method. In order to extract equidistant data the raw data are interpolated with the Akima-subspline
method since this method minimizes the change in variance due to the interpolation. The nonlinear
least-squares Gauss-Marquardt regression method is used instead of the linear least-squares fit to
the logarithmically transformed points, in order to acquire an unbiased estimate of the correlation
dimension. The dependences of the estimated correlation dimension on the embedding dimension
do not indicate a small number (i.e., less than 5) of influencing variables on the investigated
paleoclimatic system, whereas the low dimension for the Hénon map is verified (dimension 1.22-
1.28). Because of the limited amount of data in the oxygen isotope records, dimensions greater
than about 5 cannot be examined.
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INTRODUCTION

Plio-/Pleistocene climatic states are commonly deduced from oxygen isotope
ratios in oceanic sediments. Frequency spectra of such time series show variance
peaks at frequencies corresponding to orbital oscillations (*‘Milankovitch fre-
quencies,”” due to variations in eccentricity, obliquity, and precession; e.g.,
Hays et al., 1976; for reviews see Berger, 1992, and Schwarzacher, 1993).
However, the frequency spectra also show a broad range of residual, unex-
plained variance. On one hand, such spectra can indicate a large number of
influencing variables (i.e., noise). On the other hand, as few as three variables,
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interacting nonlinearly, can produce a low-dimensional chaotic time series with
such a spectrum (Newhouse et al., 1978; see Schuster, 1989, p. 147-152).

In principle it is possible to distinguish between these two possibilities by
applying the Grassberger-Procaccia algorithm (Grassberger and Procaccia, 1983)
to the measured time series. However, the validity of conclusions based on the
application of this algorithm depends strongly on the quality of the experimental
data. In particular, a large number of independent measurements are necessary
(e.g., Eckmann and Ruelle, 1992).

The question whether paleoclimatic time series are low-dimensionally cha-
otic was first investigated by Nicolis and Nicolis (1984) who claimed a dimen-
sionality of about 3 for the upper part of the Pleistocene (0 — ca. 900 ka)
climate system. Grassberger (1986) refuted this result, Maasch (1989) investi-
gated 14 oxygen records of about the same time range and concluded a dimen-
sionality in the range 4-6.

In this paper we show the application of the Grassberger-Procaccia algo-
rithm to four Plio-/Pleistocene sedimentary oxygen isotope records probably
constituting the largest data sets currently available. As the number of data points
is about 3-4 times greater than in the records used in the investigations men-
tioned above, we expect more precise results. Our data represent climate vari-
ability on time scales in the order of 2-5 Ma (late Pliocene global cooling) down
to time scales in the order of 3-4 ka.

In the following section the data material is described. We additionally
introduce an artificial data set with a known low dimensionality in order to show
how its dimension can be estimated by the algorithm. Then the method is
described step-by-step. When fitting a power-law curve is necessary, we use
nonlinear regression methods, because the commonly practiced method of fitting
a linear model to logarithmically transformed points systematically overestimates
the inferred exponent of the power-law (Mudelsee and Stattegger, 1994),

DATA

Oxygen isotope ratios ('*0/'50) are usually written (6-notation) as parts
per thousand (ppt) deviation with respect to a standard sample (e.g., PDB stan-
dard). The '®0 values from the investigated times series have been measured
on planktonic or benthic foraminifera (marine calcareous microfossils). The
measurement error e, is usually about 0.07 ppt (e.g., Tiedemann, 1991). '80
values correspond mainly to the global ice volume and the temperature of the
water in which the foraminifera built up their shells. When assuming, reason-
ably, that the oceanic deep-water temperature is approximately constant in time,
one can interpret an oxygen isotope record from benthic foraminifera as a global
climate signal. Similarly, when assuming the surface-water temperature of trop-
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ical oceans to be constant, one can also interpret an oxygen isotope record,
based on tropical living, planktonic foraminifera, as a global climate signal.
Because these assumptions may be violated to a greater or lesser degree (Mix,
1992; Seibold and Berger, 1993), we use four cores from different locations and
water masses: Deep Sea Drilling Project (DSDP) Site 607 and the Ocean Drilling
Program (ODP) Sites 659, 677, and 806 (see Table 1). This strengthens the
assumption that we are investigating a global climate behavior, provided that
the different cores show similar results. Table 1 shows the characteristics of
each investigated oxygen isotope record.

For demonstration purposes, we also investigate an artificial time series
generated by the Hénon map (Hénon, 1976). This time series is known to have
a low dimensionality (Grassberger and Procaccia, 1983). We use a set of 1000
points (Fig. 1E), thus comparable with the data sizes of the isotope records.
. The onginal time series are shown in Fig. 1.

Table 1. Experimental Time Series from the Oxygen Isotope Records Used in this Study

Water References
depth T N can* (#: 18-O data,
Location {m] Habitat  (ka) (ka) *: timescale)

DSDP 607 41°N, 33°W 3427 benth. 3040 822 3.7 # Ruddiman et al.,
1989
# Raymo et al.,
15989
# Raymo. 1992
* Raymo (pers.
comm.)*
ODP 659 18°N, 21°W 3070 benth. 5268 1194 4.4 # Tiedemann, 1991
* Tiedemann et al.,
1994
ODP 677 1°N, 83°W 3461 benth. 3190 1168 2.7 # Shackleton and
Hall, 1989;
* Shackleton et al.,
1990
ODP 806 0°, 159°E 2520  pilankt. 2120 53t 4.0 # Berger et al.,
1993
* Berger et al.,
1994°

“Time range.

Number of data points.

€ Average spacing.

“This timescale is based on that of Shackleton et al. (1990)
‘ Equidistant timescale.
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Fig. 1. (A-D) Raw data of the investigated experimen-
tal time series (cf. Table 1). The y-axis is invernted ac-
cording to the conventional representation of cooler
(higher 'O values) and warmer (lower '*0 values) cli-
matic states. (E) The chaotic Hénon map time series is
described by the equation X(i + 1) = 1 + aX(iy* +
bX(i — 1) witha = 1.4, b = 0.3, We discarded the
first S000 itcrations to eliminate transients to the chaotic
state (e.g., Ding et al., 1993) and used as time series
X(5001), ..., X(6000). Only 500 points are ploted:
X(5001), X(5003), ..., X(5999).



Plio-/Pleistocene Climate Modeling 803

-

émiﬂﬁ Ly )bl
M ,;‘/’;,“4\; i

.00

.
== e

: -l i

Fig. 1. Continued.

METHOD

Interpolation

As the Grassberger-Procaccia algorithm demands equidistant data, three
time series (DSDP 607, ODP 659, ODP 677) must be interpolated. We tried
three different interpolation methods in order to find a solution that minimizes
the distortion of the total information contained in the time series. We find
(Table 2) that the linear interpolation reduces information, whereas the natural
cubic spline interpolation strongly generates additional variance. We choose
(Table 2) the Akima-subspline interpolation as it is described in Engeln-Miillges
and Reutter (1993, Chapter 13): interpolating with polynomials of order less
than or equal to 3 and demanding only the first derivative (and the function
itself) to be continuous. These findings are in accordance with those of Schulz
(1994).

We hold the number of equidistant points generated equal to the number
of original data points in order not to enhance the statistical dependence between
the points introduced by the interpolation (see Eckmann and Ruelle, 1992).
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Table 2. Behavior of the Variances of the Time Series Due to the Interpolation

A (Variance)
Original
variance Linear Cubic Akima
DSDP 607 3.778 —1.86% +9.3% +1.86%
ODP 659 2.888 -~5.28% +16.9% —0.35%
ODP 677 3.970 -1.54% +25.1% +2.32%

Autocorrelation Function

The sccond preliminary examination, before applying the algorithm itself,
consists of determining a typical length of time 7 over which two points of the
time series, X(s) and X(1 + 1), become linearly independent. As, e.g., Maasch
(1989), we use for 7 the first zero crossing of the autocorrelation function (Fig.
2), which is calculated after linearly detrending the time series. Three time series
(see Figs. 2A, 2B, 2D) give a 7 of about 20 ka corresponding to delay of about
5 data points. Concerning the autocorrelation function for the ODP 677 time
series (Fig. 2C) we choose the first minimum (=27 ka) instead of the first zero
crossing (=~ 52 ka) for consistency, indicated by visually comparing the different
plots. For the Hénon map time series we choose 7 = 1.

Grassberger-Procaccia Algorithm
The Grassberger-Procaccia algorithm uses an equidistant time series,
X(1), X@2), ..., X,

with constant spacing and N data points, to construct an M-dimensional space
(‘‘embedding space’’) by means of the p Y vectors:

YD) = [X(), X(1 + L), X + 2L), ..., X(i '+ M - L))
Y2) = [XQ2), X2 + L), X2 +2L), ..., X2+ M - L)
Y(p) = X(p), X(p + L), X(p + 2L), ..., X(p + M —~ 1)L)]

L denotes time lag (measured in units of the data spacing) and corresponds to
7. For the time series DSDP 607, ODP 659, ODP 677, ODP 806, and the
Hénon map time series we use L = 5, L = 5, L = 10, L =5,and L = 1,
respectively (Fig. 2). Notice that the number p of vectors is given by N - (M
— 1)L. The embedding space is a reconstruction of the original (unknown) phase
space of the investigated system (Packard et al., 1980; Ruelle, 1981). Each
vector Y corresponds to a point in the embedding space and reconstructs a
specific state of the system, which is described by the time series. :
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Fig. 2. Autocorretation functions of the investigated time

series.

Next, the correlation integral, C(r), is introduced:

C(r) = factor X sum of distances [|Y(i) — Y(j)| smaller than r

805

For the calculation of the distances we use the maximum norm, as recommended
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Fig. 2. Continued.

by, e.g., Grassberger (1987). In order to exclude distances between mutually
statistically dependent vectors, Y (i) and Y(j), we use the restriction |i — Jjl >
L (Theiler, 1986). The normalizing factor is set equal to 1/[p(p — 1)]. We
also normalize the distances, setting the maximum value equal to one. Notice
that due to the symmetry in i and j oniy about S0% of all distances need to be
calculated explicitly.

Grassberger and Procaccia (1983) showed that in the original phase space
(of which the coordinate axes are given by the individual influencing variables)
of a chaotic system the following relation holds true for small r:

C() ar® 1)

where D, is the correlation dimension. The correlation dimension does not have
to be an integer number. In the embedding space with embedding dimension
M, Dy(M) estimates D,. When M is large enough, the original phase space
should be sufficiently well reconstructed and D,(M) should asymptotically ap-
proach a saturation value, D, ... Then D, ., is taken as the estimate of the
correlation dimension D,. Ding et al. (1993) showed that ‘‘large enough’’ means
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M = Ceil(D,) with Ceil(z) being the smallest integer greater than or equal to
the real number z. But, as they showed, this resuit only holds true for data sizes
N — o and measurement errors € — 0. Because of this, for experimental time
series (N < o0, ¢ > 0), it may happen that the original phase space cannot be
reconstructed, i.e. no saturation behavior of D,(M) is observed. The general
dependence of C(r) and D,(M) for experimental time series is demonstrated by
Ding et al. (1993). Ben-Mizrachi et al. (1984) gave guidelines concerning the
existence of measurement errors. Eckmann and Ruelle (1992) gave a maximum
sensible value of D,(M) that can be calculated with N data points.

We now proceed as follows: First, we calculate the correlation integrals
forM =1, 2,3, ... (Fig. 3). Then, from C(r) we estimate D,(M). Our method
for doing this is described in the next subsection, along with our findings con-
ceming the influence of the measurement error ¢,. The following subsection
shows how and up to which value of M we decide to calculate C(r). This value,
as mentioned above, depends on N. The final subsection shows how some
stochastic time series can be distinguished from low-dimensional chaotic time
series.

Estimating the Correlation Dimension by Nonlinear Regression

Estimation of D,(M) from the power-law relation (Eq. 1) is usually carried
out by linear least-squares fitting to logarithmically transformed points (r, C)
and taking the slope as an estimate of D,(M). However, assuming the error of
a distance, ¢,, to be normally distributed ~N(0, o?), as may be required for a
specific distance |Y(i) — Y(j)ll, the appropriate regression model for least-
squares fitting of Eq. (1) becomes

r=aC"? + ¢

introducing the second fit parameter, a. We use this model. When its basic
assumption holds true, the Gauss-Markov condition {¢) = 0 would be violated
in the double-log model, thus leading to a biased estimation (e.g., Seber and
Wild, 1989). Mudelsee and Stattegger (1994) showed that this bias would result
in an overestimation of D, (M). This is also confirmed in the present study (Fig.
4E).

~ In accordance with the above statement, the power-law dependence (Eq.
1) of the correlation integrals from our time series holds only for small r (Fig.
3). On the other hand, if r approaches the strength of the experimental noise,
the points (r, C) become unreliable. The fit region therefore has an upper bound,
ry, and a lower bound, r;. Our choice of the proper fit region is guided by four
aims:
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Fig. 3. Correlation integrals of the investigated time series,
calculated with M = 1, 2, ., . Because of the ‘double-loga-
rithmic scale linear regions represent power-law depen-
dences. For large values of r, C(r) saturates because of the
limited size of the embedding space (corresponding to the
limited range of values of the time series). (A-D) For very
small values of r, the power-law dependence is disturbed by
the noise of the experimental data. The lower bound, ry, of
the scaling region, should orientate to the experimental noise
strength which is in the order of (A) r = 0.04, (B) r = 0.04,
(C) r = 0.04, (D) r = 0.06 (see text).
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Fig. 3. Continued.

(1) To have a broad fit region for statistical reasons (Eckmann and Ruelle,
1992, see the next subsection).-

(2) To be above a typical value of the experimental noise strength (Ben-
Mizrachi et al., 1984). Considering that the distances | Y(i) — Y()l|
are measured with the maximum norm, r, = €2 results (the values
of the noise strength for each experimental time series, considering the
normalization of the distances, r, (see above) are given in the caption
of Figs. 3A-D). Although the values of the estimated parameters do
not strongly depend upon r;, (Mudelsee and Stattegger, 1994) we obtain
the best results using this recommendation.

(3) To have an optimum value for the goodness-of-fit. This measure must
be independent of the number ng, of fit points. Therefore, we use the
ratio x*/(ng, — 2).

(4) A proper visual linearity within the fit region when plotted on a double-
logarithmic scale.

As all four aims cannot be fulfilled at the same time, an interactive pro-
cedure (evaluating a fit region—regression—judging the result-—evaluating a new
fit region—. . .) is applied.
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Fig. 4. Dependence of the estimated correlation
dimension, D,(M), on the embedding dimension,
M. (A-D) No saturation behavior is observed.
The difference to the resuit from the scrambled
time series is small. (E) The Hénon map time -
series shows the expected saturation for Dy(M)
at values between 1.22 and 1.28. The difference
to the result from the scrambled time series is
large. Also shown is the saturation behavior for
Dy(M) calculated with linear least-squares fits to
the logarithmically transformed points at values
between 1.33 and 1.48.

The regression itself consists of nonlinear least-squares fits using the Gauss-
Marquardt algorithm. As starting values for the parameters we use the results
from linear regression for the logarithmically transformed points. A$ the mini-
mizing function x*(a, D,(M)) has a simple form (as can be verified analytically),
stopping rules are easily formulated. The standard deviation of the estimated
parameter D,(M) is determined by Monte Carlo simulation (number of simu-
100) of the original X-values of the equidistant time series. We use

lations
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boundaries of D,(M) corresponding to the 95.45% minimum values of x 2, which
would mean 2-sigma ervors in the case of normally distributed values. However,
the bounds for D,(M) are uneven (Figs. 4A-D), indicating a nonnormal distri-
bution. The Monte Carlo simulations take the greatest amount of computing
time. The regression calculations are carried out using modified routines from
Press et al. (1989).

We think that nonlinear fits are a methodical improvement of the Grass-
berger-Procaccia algorithm. We consider that there might be additional improve-
ments in design of the regression step; for example, in the choice of points (r,
C) to evaluate the correlation integral (see Seber and Wild, 1989, Chapters 3
and 95).

Influence of the Number of Data Points

As stated above, Eckmann and Ruelle (1992, page 186) gave a relation for
the maximum sensible value of D,(M) dependent on the number of data points
N of the time series. However, as we think that a factor of 1/2 was lost when
moving from their formula (4) to formula (5) we quote their result (their formula
(6)) with ‘‘N/2"’ instead of “*N*’:



812 Mudelsee and Stattegger

D, max = 2 log (N/2)/ log (1/p)

where p denotes the portion of the fit range with respect to the whole range of
distances, r. A requirement that is roughly fulfilled in our application is that p
should be in the order of 0.1 for statistical reasons (Eckmann and Ruelle, 1992).
Considering the differences in N of our time series (Table 1), we find D, to
be in the order of 5. It means that our statement about the dimensionality of the
paleoclimatic system is limited by at least this value. If we find no saturation
behavior for D,(M) below 5 we do not increase M further and the calculations
are stopped.

Stochastic Time Series

A very large number of influencing variables (i.e., noise processes) cor-
responds to a very high dimension of the original phase space, so the saturation
behavior of D,(M) should then occur only for very large values of M. Hence,
a time series generated by a white noise process does not show saturation (e.g.,
Schuster, 1989, p. 128-129). However, time series generated by a simple class
of colored noise do show saturation (Osbome and Provenzale, 1989). We con-
sider that this finding does not influence rejections of supposed low-dimensional
systems.

In order to compare the hehavior of D,(M) for the five investigated time
series we also calculate D,(M) for the *‘scrambled’’ time series (Scheinkman
and LeBaron, 1989). From a time series a ‘‘scrambled’’ time series is generated
by randomly sampling from the original data set with replacement. A low-
dimensional chaotic time series would produce a curve D,(M) that is less than
D,(M) from the scrambled time series (Eckmann and Ruelle, 1992).

RESULTS

The results are shown in Fig. 4. In the case of the unscrambled Hénon
map time series, the saturation behavior of D,(M) is clearly visible, whereas no
saturation is observed for the scrambled time series (Fig. 4E). The saturation
value found in our application (1.22-1.28) corresponds closely to the published
value of D, = 1.25 + 0.02 (Grassberger and Procaccia, 1983). Further, D,(M)
calculated with double-log plots and linear regression shows saturation; how-
ever, the saturation value is significantly higher (1.33-1.48), confirming the
findings of Mudelsee and Stattegger (1994). We explain the fact that we find,
using nonlinear regression, about the same value as Grassberger and Procaccia
(1983) (who used double-log plots and linear regression) by the much greater
number of data points in their time series (20000 in comparison to 1000 in our
paper). This might have resulted in the assumed bias in the estimated value o
D, (see above) becoming negligible. '
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In the case of the four experimental oxygen isotope time series no saturation
is observed up to the maximum sensible value for D,(M) of about 5 (Figs. 4A-
D). The experimental time series cannot be distinguished from the scrambled
time series by the algorithm. (In case of the ODP 659 time series, the same
result had previously been quoted in Mudelsee and Stattegger (1994), where
linear interpolation was used and commercial software for the nonlinear regres-
sion applied.)

CONCLUSIONS

One artificial, low-dimensional chaotic time series and four paleoclimatic
time series have been analyzed with the Grassberger-Procaccia algorithm in
order to investigate whether the paleoclimatic time series exhibit a low-dimen-
sional chaotic behavior. As methodical improvements we inserted the Akima-
subspline interpolation method as well as the nonlinear regression method.

The low dimensionality- of the artificial time series was confirmed for a
comparably small number of data points, supporting our insertion of nonlinear
regression. However, if one is not interested in an exact value of the dimension
but would prefer to know whether the time series is low-dimensional, then the
linear regression on the logarithmically transformed points is also applicable.

The paleoclimatic time series (marine oxygen isotope records) are expected
to reflect global climate variability on time scales ranging from about 2-5 Ma
to 3-4 ka. This expectation is strengthened by the fact that the time series,
originating from various locations, show the same results. For all four times
series no saturation behavior of the estimated correlation dimension D,(M) was
observed up to D,(M) = 5. We infer that the investigated climate system is -
governed by five or more independent influencing variables. Statements about
higher dimensions demand greater data sizes in order to reconstruct the original
phase space. ]

This finding is of importance for the modeling of the corresponding paleo-
climatic system: the global Plio-/Pleistocene climate system is driven extemnally
by Milankovitch forcing with variations in eccentricity, obliquity, and preces-
sion. In the sedimentary records this extemnal forcing is documented as well as
the internal response of the climatic system. Investigating this response, we plan
to test the assumption that not the whole spectrum of climate variability is due
to nonlinearly interacting variables but that rather some harmonic components
(discrete frequencies) exist. Harmonic components presumably should corre-
spond to Milankovitch frequencies. By filtering out corresponding variability
from the time series, it should be possible to single out the response of the
Earth’s climatic system to the orbital forcing. GRAPE-density measurements
and magnetic susceptibility measurements will complete the paleoclimatic
database. These records typically show data sizes one magnitude higher than
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oxygen isotope records, they are expected to be more favorable in estimating
higher dimensions.
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