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Abstract We derive approximating formulas for the mean and
the variance of an autocorrelation estimator which are of prac-
tical use over the entire range of the autocorrelation coefficient
ρ. The least-squares estimator

∑n−1
i=1 εiεi+1 /

∑n−1
i=1 ε2

i is stud-
ied for a stationary AR(1) process with known mean. We use
the second order Taylor expansion of a ratio, and employ the
arithmetic–geometric series instead of replacing partial Cesàro
sums. In case of the mean we derive Marriott and Pope’s (1954)
formula, with (n− 1)−1 instead of (n)−1, and an additional term
∝ (n− 1)−2. This new formula produces the expected decline to
zero negative bias as ρ approaches unity. In case of the variance
Bartlett’s (1946) formula results, with (n− 1)−1 instead of (n)−1.
The theoretical expressions are corroborated with a simulation
experiment. A comparison shows that our formula for the mean
is more accurate than the higher-order approximation of White
(1961), for |ρ| > 0.88 and n ≥ 20. In principal, the presented
method can be used to derive approximating formulas for other
estimators and processes.
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1 Introduction

Consider the following well-known least-squares estimator of the
serial correlation coefficient ρ of lag 1 from a time series εi (i =
1, . . . , n) sampled from a process Ei with known (zero) mean:

ρ̂ =
n−1∑

i=1

εiεi+1

/
n−1∑

i=1

ε2
i . (1)

Let Ei be the stationary AR(1) process,

E1 ∼ N(0, 1), Ei = ρ Ei−1 + Ui, i = 2, . . . , n, (2)

with Ui independent and identically distributed as N(0, 1 −
ρ2) and |ρ| < 1. Then the variance and the mean of ρ̂ are ap-
proximately given by the general formulas (for arbitrary lag) of
Bartlett (1946) and Marriott and Pope (1954), respectively:

var(ρ̂) ' var′(ρ̂)B =
(1− ρ2)

n
, (3)

E(ρ̂) ' E′(ρ̂)MP = ρ− 2 ρ

n
. (4)

(The indices refer to the two studies.)
An example for an application is fitting an AR(1) model to

real data for which the mean is a priori known and can be
subtracted. Formulas for E(ρ̂) can be used for bias correction,
whereas var(ρ̂) gives the uncertainty of the estimated fit param-
eter ρ̂.

Approximations (3) and (4) are based on the second order
Taylor expansion of a ratio. The primes indicate that the formu-
las are further based on the replacement of partial Cesàro sums,
like

n−1∑

r=−n+1

(
1 − |r|

n

)
ρ|r|

with
+∞∑

r=−∞
ρ|r|,

see, for example, Priestley (1981, section 5.3). Evidently, the
quality of the latter simplification is in doubt when |ρ| is large
(Bartlett 1946; Kendall 1954). In particular: as ρ → 1, all time
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Estimation of the serial correlation coefficient

series points become equal and ρ̂ → 1. However, (4) fails to
produce that zero bias as ρ → 1. This failure is also shared
by published approximations of higher order. For example, the
formulas of White (1961) for estimator (1) and process (2) are,
to our best knowledge, the most accurate in terms of powers of
(1/n):

var(ρ̂) ' var(ρ̂)W =
(

1

n
− 1

n2
+

5

n3

)
−

(
1

n
− 9

n2
+

53

n3

)
ρ2

− 12

n3
ρ4, (5)

E(ρ̂) ' E(ρ̂)W =
(
1− 2

n
+

4

n2
− 2

n3

)
ρ +

2

n2
ρ3

+
2

n2
ρ5. (6)

For ρ 6= 0, Eq. (6) cannot produce zero bias.

The true zero variance of ρ̂ as ρ → 1, on the other hand, is
produced by Bartlett’s formula, (3), whereas White’s formula,
(5), fails to do so.

The same weaknesses of formulas (4), (5) and (6) exist also
for ρ → −1.

Since approximations (3)–(6) are not intended for large |ρ|,
our focus is to derive approximating formulas for var(ρ̂) and E(ρ̂)
which can be used over the entire range of ρ, in particular for
ρ → ±1. This is done in Section 2. Thereby we also use the sec-
ond order Taylor expansion. However, no further simplification
is made: we employ the arithmetic–geometric series instead of
replacing partial Cesàro sums. This yields an approximation for
E(ρ̂) which consists of Marriott and Pope’s formula, (4), with
an additional term; our approximation produces zero bias for
ρ → ±1. We further confirm Bartlett’s result, (3), for var(ρ̂).
The order of the error for the different approximating formulas
is considered. The theoretical expressions are examined over the
entire positive range of ρ with a simulation experiment (Section
3), for different values of n. As a practical consequence of this
experiment, we give the range of ρ for which our formula for E(ρ̂)
should be used instead of (6) or (4).
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2 Series expansions

For the derivations we assume ρ 6= 0.

2.1 Variance

We write (1) as

ρ̂ =

(
1

n

n−1∑

i=1

εiεi+1

) / (
1

n

n−1∑

i=1

ε2
i

)

= c /v , say,

and then we have, up to the second order of deviations from the
means of c and v, the variance

var(ρ̂) = var(c/v) ' var(c)

E2(v)
− 2 E(c)

cov(v, c)

E3(v)

+ E2(c)
var(v)

E4(v)
. (7)

We now apply a standard result for quadravariate standard Gaus-
sian distributions with serial correlations ρj (e. g. Priestley 1981,
p. 325), namely

cov(εaεa+s, εbεb+s+t) = ρb−a ρb−a+t + ρb−a+s+t ρb−a−s,

from which we derive, for εi following process (2):

cov

(
1

n

n−1∑

a=1

εaεa+s,
1

n

n−1∑

b=1

εbεb+s+t

)

=
1

n2

n−1∑

a,b=1

(ρ|b−a| ρ|b−a+t| + ρ|b−a+s+t| ρ|b−a−s|), (8)

where the symbol
∑

a,b represents a double summation. Without
further simplification we can use this equation to directly derive
the various constituents of the right-hand side of (7). Firstly, we
consider var(c), which is given by putting s = 1 and t = 0 in Eq.
(8):

var(c) = var

(
1

n

n−1∑

i=1

εiεi+1

)

=
1

n2




n−1∑

a,b=1

ρ2|b−a| +
n−1∑

a,b=1

ρ|b−a+1| ρ|b−a−1|

 .
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Estimation of the serial correlation coefficient

We find, by summing over the points of the a-b grid in a ‘di-
agonal’ manner, and by using the arithmetic-geometric series,
that

n−1∑

a,b=1

ρ2|b−a| = (n− 1) + 2
n−2∑

i=1

i ρ2(n−i−1)

= (n− 1)

(
2

1− ρ2
− 1

)
+ 2

(ρ2n−4 − ρ−2)

(1− ρ−2)2
(9)

and

n−1∑

a,b=1

ρ|b−a+1| ρ|b−a−1| = (n− 1) ρ2 + 2
n−2∑

i=1

i ρ2(n−i−1)

= (n− 1)

(
2

1− ρ2
+ ρ2 − 2

)

+2
(ρ2n−4 − ρ−2)

(1− ρ−2)2
. (10)

Equations (9) and (10) together give var(c). Further, by putting
s = 0 and t = 1 in Eq. (8),

cov(v, c) = cov

(
1

n

n−1∑

i=1

ε2
i ,

1

n

n−1∑

i=1

εiεi+1

)

=
2

n2

n−1∑

a,b=1

ρ|b−a| ρ|b−a+1|,

where

n−1∑

a,b=1

ρ|b−a| ρ|b−a+1| = ρ2n−3 +
n−2∑

i=1

(2 i + 1) ρ2(n−i)−3

= (n− 1)
2

ρ

(
1

1− ρ2
− 1

)

+ 2
(ρ2n−5 − ρ−3)

(1− ρ−2)2

+
(ρ2n−3 − ρ−1)

(1− ρ−2)
. (11)
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Similarly, by putting s = t = 0 in Eq. (8),

var(v) = var

(
1

n

n−1∑

i=1

ε2
i

)

=
2

n2

n−1∑

a,b=1

ρ2|b−a|,

which is given by (9). We finally need

E(v) =
n− 1

n
(12)

and

E(c) =
ρ(n− 1)

n
. (13)

All three terms contributing to the right-hand side of (7) have
a part proportional to (n− 1)−2. However, these parts cancel out
to give:

var(ρ̂) ' var(ρ̂)M =
(1− ρ2)

(n− 1)
. (14)

(The index refers to this study.) This expression for var(ρ̂)M

holds also for ρ = 0.

2.2 Mean

We have, up to the second order of deviations from the means
of c and v, the mean

E(ρ̂) = E(c/v) ' E(c)

E(v)
− cov(v, c)

E2(v)
+ E(c)

var(v)

E3(v)
. (15)

Making use of previous expressions for cov(v, c), var(v), E(v) and
E(c), we obtain

E(ρ̂) ' E(ρ̂)M = ρ− 2 ρ

(n− 1)
+

2

(n− 1)2

(ρ− ρ2n−1)

(1− ρ2)
. (16)

This expression for E(ρ̂)M holds also for ρ = 0. Letting ρ → ±1,
E(ρ̂)M approaches ±1.
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Estimation of the serial correlation coefficient

2.3 Approximation error

Anderson (1995) showed that the error of approximation (3) is
of O(n−2) and the error of (4) is of O(n−1). Since we also used
the second order Taylor expansion, the same orders are valid
also for the approximating formulas derived here, (14) and (16)
respectively. Thus, our expression for the variance, (14), cannot
be distinguished from Bartlett’s result, (3). This is interesting
since we have not replaced partial Cesáro sums, while Bartlett
has. The first two terms of our expression for the mean, (16),
correspond to Marriott and Pope’s result, (4).

An additional source of approximation error is due to replac-
ing partial Cesáro sums; this error, for |ρ| large, may be larger
than the error due to finite n.

White (1961) derived formulas (5) and (6) in a different man-
ner. He calculated the kth moment of (c/v) via the joint moment
generating function m(c, v), with c and v defined as here (Section
2.1) without the factors 1/n,

E(ρ̂k) =
∫ 0

−∞

∫ vk

−∞
. . .

∫ v2

−∞
∂km(c, v)

∂ck

∣∣∣∣∣
c =0

dv1 dv2 . . . dvk.

He expanded the integrand to terms of order n−3 and ρ4.

3 Simulation experiment

We generated a set of 250 000 time series from process (2) for
each combination of n (20, 100) and ρ (densely distributed over
the interval [0; 1[). For each time series ρ̂ was calculated, yield-
ing sample means, E(ρ̂)S, and sample standard deviations. These
can be compared with the theoretical values calculated from for-
mulas (14) and (16), respectively. We include White’s (1961)
formulas, (5) and (6), in the comparison. Figure 1 shows plots
of the negative bias, ρ− E(ρ̂), and of

√
var(ρ̂).

In general, the deviations between the theoretical results and
the simulation results decrease with increasing n, as is to be
expected.

Up to a certain value of ρ, White’s (1961) formulas perform
better than ours since they are more accurate with respect to
powers of (1/n). For larger ρ, our formulas give results closer to
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Figure 1: Simulation experiment. Top panel: negative bias, bot-
tom panel: standard deviation. Simulation results (dots). Theo-
retical result, our formulas, (14) and (16), respectively, (heavy
line). Theoretical result, White’s (1961) formulas, (5) and (6),
respectively, (light line).

the simulation, particularly the decline to zero negative bias as ρ
approaches unity. This decline is caused by the term proportional
to (n−1)−2 in (16). For ρ large, and n small, this term contributes
heavier to E(ρ̂).

Let ρ= be defined by

|E(ρ̂)M − E(ρ̂)S| < |E(ρ̂)W − E(ρ̂)S| for ρ > ρ=,

that means, ρ= gives the range for which our formula for the
mean, (16), is closer to the simulation than White’s formula,
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Figure 1: (Continued.)

(6). Since ρ= should depend on n, we carried out additional
simulations as above for n = 10, 50, 200, 500 and 1000 (where
necessary with an increased number of time series in order to
suppress the simulation noise). It turned out that for n ≥ 20,
ρ=(n) is given by the intersection between the two theoretical
formulas (E(ρ̂)M = E(ρ̂)W ) which is plotted in Fig. 2. As can
be seen in Fig. 2, ρ=(n) does not strongly depend on n. The
practical consequence is that our formula for the mean, (16),
should be used when |ρ| is larger than about 0.88 and n ≥ 20.

In case of the variance, var(ρ̂)W gives results closer to the sim-
ulation than var(ρ̂)M (and var(ρ̂)B) for nearly the entire range
of ρ (Fig. 1). We consider this is due to the fact that var(ρ̂) de-
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Figure 2: Comparison between White’s approximation, (6), and
our approximation, (16), for the mean. For ρ > ρ= our formula
is more accurate, and vice versa (see text for details).

creases monotonically with |ρ|—a behaviour that is also shown
by White’s formula. The fact that var(ρ̂)B describes the simula-
tion better than var(ρ̂)M for ρ → 0, is regarded as spurious.

4 Extensions

In the same manner as here, approximations can be obtained for
other estimators (cf. Box et al. 1994, section A7.4) of the serial
correlation coefficient. Consider, for example, the Yule–Walker
estimator ρ̂YW =

∑n−1
i=1 εiεi+1 /

∑n
i=1 ε2

i . Because here the sums
differ in the number of terms, the analogue to Eq. (8) has an ad-
ditional term, and the approximations for the variance and the
mean are more complicated than Eqs. (14) and (16), respectively.
However, the principal behaviours for ρ approaching unity are
similar in case of ρ̂YW: the decline of the negative bias (to a value
of 1/n) and the approach of zero variance. An experiment with
n = 20 and 250 000 simulations, corroborating the approxima-
tions, showed that ρ̂YW is more biased and has a smaller variance
than the least-squares estimator. For ρ > 0.5, the mean squared
error (MSE, given by bias2 + variance) of ρ̂YW is larger than the
MSE of the least-squares estimator, and vice versa for ρ < 0.5.
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Estimation of the serial correlation coefficient

Our approximation formulas apply also to AR(1) processes
with constant but unknown variance, and asymptotic stationary
AR(1) processes (transient behaviour). In principal, it should be
possible to obtain formulas for estimators of arbitrary lag in the
same manner as here.
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