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Abstract. The Grassberger-Procaccia algorithm, which allows one to estimate the
correlation dimension of a chaotic system, was investigated on oxygen isotope data from
the deep-sea sediment core ODP Site 659 from the eastern North Atlantic. These data
provide uniform coverage of the last 5.2 Ma and show an average spacing of 4.5 ka (1170
points). They are assumed to reflect global ice volume as a proxy for global climate.

This paper focusses on methodical aspects. One important point consists in the use of
nonlinear fits instead of linear fits after a logarithm transformation. The latter
overestimates the correlation dimension. An advantage is that the comparable large
amount of original data allowed the number of (equidistant) working-data points
(generated by linear interpolation) to be held equal to the number of original data points
in order to strive for small statistical dependences between the working-points.

The Pliocene and Pleistocene climatic signatures can clearly be distinguished in the
reconstructed space of climatic states.

The behavior of the estimated correlation dimension on the embedding dimension does
not indicate the existence of a low-dimensional attractor. The behavior on a variable time
lag does not indicate a definite lower boundary for the time lag above 4.5 ka. The
behavior on the fit region shows a strong dependence on the upper boundary for the
region, whereas the dependence on the lower boundary is weak.

Introduction

Correlation Dimension and the Grassberger-Procaccia Algorithm

The correlation dimension (D) has become an important descriptive parameter of
chaotic systems; it is sensitive to the dynamical processes of coverage of the
attractor shown by this system, in contrast to the fractal dimension which
describes the geometry of the attractor. (The latter has an upper boundary in D.)
The correlation dimension can be of importance for constructing models of such
systems, e.g., a low value of D would indicate the possibility of describing the
system by a low number of deterministic equations. Advantageously, the
correlation dimension can be calculated from a single time series of a system by
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reconstructing the system’s trajectory in an "embedding space" (Packard et al.
1980, Takens 1981, Ruelle 1981, Grassberger & Procaccia 1983). To construct
the embedding space, a time lag is introduced by which the time series is
successively shifted. The dimension of the trajectory, and thus the correlation
dimension, can be calculated using the algorithm of Grassberger & Procaccia
(1983) (in addition to different algorithms). Hereafter, the whole procedure is
called the GP-method. It is outlined briefly below.
Given an equidistant time series,

X(1), X(2), ..., X(N),

with a certain spacing and a certain number N of data points, the embedding
space is constructed by means of Y vectors:

Y(1) = [X(1), X(1+L), X(1+2L), ..., X(+M-1)L)], 1)
Y(2) = [X(2), X(2+L), X(2+2L), ..., X(2+(M-1)L)],

Y(p) = [X(p), X(p+L), X(p+2L), ..., X(p+(M-DL)];

where L denotes a time lag (measured in units of the data spacing) and M is the
embedding dimension. Notice that the number p of vectors is given by N-(M-1)L.
Each vector Y corresponds to a point in the embedding space and defines a
certain state of the system which is described by the time series (ODP 659 data,
Fig. 4).

The Grassberger-Procaccia algorithm introduces the correlation integral, also
called correlation function, C(r),

C(r) = factor x sum of distances |Y(i)-Y(j)| smaller than .

(The symbol r denotes the distance between points in the embedding space and
should not be confused with the correlation coefficient.) For our purposes, the
(normation) factor is set to 1/2 accounting for the symmetry in i, j of distances.

Grassberger & Procaccia (1983) showed that for "large” M and "small" r the
following relation holds true provided an attractor exists:

C) oD Q)

In practice, the correlation dimension D is determined by setting M=1,2.3, ... and
estimating a power-law relation between r and C(r). This is usually carried out by
means of linear least-squares regression on the logarithmically transformed data.
If the value of the estimated exponent of the power-law relation saturates with
growing M, this saturation value is taken as the best estimate of D. On the
contrary, a white noise process, for which no attractor exists, would not produce a
saturation behavior of the exponent (Fig. 1). Strictly speaking, one should use the
term "correlation dimension" only when saturation occurs. In the text, however,
we have adopted it synonymously to the exponent of the power-law relation.
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Fig. 1. Redrawn after Nicolis & Nicolis (1984), with modified notation. Left panel:
Correlation functions in double-log plot for different choices of M (note that the
normation factor (section "Correlation dimension...") is different to that used in this
chapter); the linear range gives the slope, D. Right panel: D versus M; the saturation-like
behavior for the climate data (circles) led to the conclusion of Nicolis & Nicolis (1984)
that an attractor exists with D ~ 3.1 for the long-term climatic system. The white noise
process (x) does not show a saturation behavior.

The Grassberger-Procaccia (GP) Method Applied to Experimental Data

Describing complex natural systems is often done by starting with basic equations
given by the natural laws considered as necessary for the description of the sys-
tem. From these a set of, usually coupled, differential equations is derived which
describe the behavior of the system. One example is the Lorenz model in mete-
orology (Lorenz 1963). From the differential equations a, theoretically, unlimited
number of noise-free data points can be derived. Those "theoretical" systems
allow efficiently converging calculations of the correlation dimension with the
GP-method (Ben-Mizrachi et al. 1984).

However, when the governing equations of a natural system are generally
unknown, calculation of the correlation dimension with the GP-method must be
done using experimental data which are generally limited in number and
influenced by noise. Therefore, some points of critique have been raised
concerning the GP-method applied to experimental data:

(@) Number of data points, N. Figure 5a, from ODP 659 data, shows the
saturation behavior of C(r) for large r, where the power-law (Eq. 2) does not
hold true anymore. Regression comprising this region of r would yield a
dimension, D, that is too low. The fit region, therefore, has an upper
boundary, ryy. It has been shown that for too high choices of M (with N
fixed) the value of r{; diminishes and, hence, the possibility to determine the
exponent also diminishes. The maximum meaningful value of M grows with
N however, a uniformly accepted formula N(M) does not exist yet. For
example, if N ~ 1000, a maximum value of M ~ 4 can be derived following
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Theiler (1986), a maximum value of D ~ 5.5 can be derived from the slightly
corrected formula of Eckmann & Ruelle (1992).

(b) Time lag, L. In order to cover an attractor without any preference for a
certain region of it, the vectors Y(i) should be statistically independent of
each other. This can be achieved by using a high value of L. Alternatively, as
suggested by Theiler (1986), the summation in the correlation integral about
the distances | Y(i)-Y(j)| could involve the condition that |i-j| should be
high enough to exclude statistically dependent pairs Y(i), Y(j). On the other
hand very high values of L lead to the loss of information on finer time
scales. A generally accepted relation is (e.g. Maasch 1989):

L = correlation time of the time series

(for the determination of the correlation time, see below). In addition, we stress
that another source of statistical dependence between the vectors Y(i) is
introduced by the initial interpolation of the data points in order to get
equidistant points. This dependence increases if more working-points are
generated than data points existed originally.

(¢) Experimental noise. It is comprehensible that a fit region below a certain
value, 1 , does not make sense because a finite distance between two vectors,
Y(i) and Y(j), is already given by the error of the experimental data. It has
been shown (Ben-Mizrachi et al. 1984) that 1, should be in the order of this
experimental noise amplitude.

More details about the role of N, L and the "scaling region" (that is the interval
[r, ryD) are given in: Lochner et al. (1989), Nerenberg & Essex (1990).

(d) Colored noise. A basic point of critique has been raised by Osborne and
Provenzale (1989) who showed that some stochastic processes (colored
noise) also exhibit a finite correlation dimension. Onto that, we emphasize
studying the following topics more intensively: the multiplicative interaction
between variables describing complex natural systems, the impact of this
interaction on the shape of the distribution function, i.e. the color of the
noise, of these variables and the significance of the lognormal distribution
(Aitchison & Brown 1957) for the description of such systems.

Since 1983, the GP-method has been applied to experimental data from natural
systems. The data cover different temporal and spatial scales. Nicolis & Nicolis
(1984) claimed the existence of a definite, low-dimensional attractor (D =3.1) for
the long-term global climate system (Fig. 1). They used the 5180 record of the
deep-sea sediment core V28-238 which covers the last 800 ka and consists of
~200 data points. This result was subsequently criticized by Grassberger (1986)
who warned that "spuriously small dimension estimates can be obtained from
using too few, too finely sampled and too highly smoothed data". Maasch (1989)
investigated 14 Pleistocene 5180 records and concluded that an attractor exists
with D in the range 4-6.
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In this work we have concentrated on selected methodical aspects of the
application of the GP-method to experimental data: From the above critique we
have investigated point (b) and, less extensively, points (a) and (c). As data
source we have chosen a 5180 record covering a longer time interval and
containing more data points than the records used in the publications mentioned
above. This experimental time series contains the maximum of data currently
available in paleoclimatology, but still is relatively ,short“ in comparison to
"theortical" systems.

Additionally, of significant importance, we show that the commonly practised
way of fitting the power-law behavior of C(r) (Eq. 2) in order to estimate the
correlation dimension systematically overestimates the latter. Instead of using
double-log plots and linear fits we use nonlinear fits.

Global Long-Term Climatic Variations Recorded from Deep-Sea
Core ODP Site 659

Time Series

Data source is the deep-sea sediment core ODP Site 659, recovered during the
Ocean Drilling Program, from the eastern North Atlantic (18°04.63'N,
21°01.57'W) at a water depth of 3070 m (Sarnthein & Tiedemann 1989).
Specimens of the benthic foraminifer Cibicidoides wuellerstorfi (CaCO3 shell),
size fraction 250-315um, were taken to measure by means of a mass spectrometer
the oxygen isotope ratios relative to a standard (PDB):

8180 [%0] = [(180/1%0)campie - (130/10)ppp1/(180/10)ppp x 1000
The average, absolute uncertainty of the 5180 values is 0.07 %o.
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Fig. 2. The time series: oxygen isotope record for the ODP Site 659, 0-5000 ka
(Tiedemann et al., in press), linear trend; for further explanation see the text.
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Autocorrelation Function

These data are assumed to reflect the global ice volume as a proxy for global

climate (low values: "warm"/"less land-ice", high values: "cold"/"much land-
ice"). The time scale (Figure 2, Tiedemann et al., in press) was achieved by
determining magnetic and biostratigraphic events in the core and then tuning the
time scale between these events by means of the calculated temporal behavior of
the parameters of the Earth’s orbit (which act as "pacemakers" for the global
long-term climate, see, e.g., Hays et al. 1976, Imbrie et al. 1984). The core shows
no hiatuses, the number of original data points, N, is 1170, the maximum age is
5268 ka, the average spacing is 4.5 ka. The linear trend (=- 0.266 %o /ka) is also
shown in Fig,. 2.
Subtracting the linear trend permitted calculation of the autocorrelation function
of the time series (Figure 3); its first zero crossing, which is generally
recommended as an estimate of the correlation time (e.g., Maasch 1989), is 23.4
ka. This value corresponds closely to the Milankovitch precession period of 23 ka
(Berger & Loutre 1991).
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Fig. 3. Autocorrelation function of the linear detrended time series (Fig. 2); the first zero
crossing occurs at the time lag 23.4 ka.

Embedding Space
In order to obtain equidistant working-points, the original data (not detrended)

were interpolated by a linear interpolation. This seemed to be acceptable since it
reduced the variance, and, hence, the stored information, of the original data by
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Fig. 4. Embedding space, constructed with M=3, L=3 for the time series. Units are %o vs.
PDB. A point Y(i) is given by [X(i), X(i+L), X(i+2L)] (Eq. 1) and defines the state of the
climatic system at a certain time. The connection of consecutive points ("'trajectory") in
the embedding space reflects the temporal behavior of the system. The correlation
dimension describes such sometimes strange-looking objects ("'strange attractors') not
only geometrically but as well notices the "density" of points in the embedding space.
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only 4%. The number of working-points was held equal to the number of original
data points in order to avoid the enhancement of the statistical dependence
between the vectors Y(i) (above, section "The GP-Method...", point b). Figure 4
shows the system’s trajectory in the embedding space for a certain choice of M
and L. There appear to be two clouds of points, representing two climatic states
["Pliocene": older part of the time series (Fig. 2), showing lower oxygen isotope
values and smaller oscillations; "Pleistocene": younger part of the time series,
showing higher oxygen isotope values and larger oscillations]. One possibility
would be to substract the linear trend from the time series, the other would be to
investigate these distinct time intervals separately. First of all, however, we show
the results using the entire range of the original data.

Correlation Integral

The correlation integral, C(r), was determined for M = 2,..9 and L = 1,...,9
(Figure 5a). L is measured in units of the spacing (4.5 ka) of the equidistant
points.

Double-log plots and linear fits: overestimating the correlation dimension

Figure 5b shows the correlation function for a certain choice of M and L in a
double-log plot. The latter is the basis for the commonly practised way of
regressing the original model

Cr)oc 1P

Fig. 5a-d. a Correlation integral, calculated with L=5, M=2,...,9 in linear plot for the
entire scale of distances, r. Note the power-law-like growth of C(r) for small r, the
saturation behavior for large r (which corresponds to the limited extension of objects like
those shown in Fig. 4), and the saturation value of p(p-1)/2 (p is the number of vectors in
the embedding space, see section "Correlation Dimension..."). Increasing values of M
generally yield larger distances and a lower saturation value. b Correlation integral
(dots), calculated with L=5, M=6 in double-log plot. [Because of the unequally spaced
values of log (r) the dots representing higher values of r are not resolved and appear as a
thick line. In Fig. 5d, using a linear plot, the r-values are equally spaced.] The scaling
region corresponds to C(r) < 12500 and is marked. The best linear fit (dashed) using this
scaling region yields the slope, i.e. D = 5.53+0.05; the best power-law fit (solid; see Eq.
2), using the same scaling region and the linear plot, yields D = 4.57+0.03. ¢ Same as in
Figure 5b, focussing on the scaling region. d Same as in Figure Sc, but using linear scales
for r and C(r). The superiority of the nonlinear power-law fit over the linear fit after the
logarithm transformation is demonstrated. The sum of squared residuals of 3.70x 103 from
the nonlinear fit in comparison with 3. 83x107 from the linear fit after the logarithm
transformation underlines this observation. The superiority was noticed for all other
values of L and M.
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and consists of taking the logarithms and then fitting a straight line to the
transformed data:

log[C(1)] = const. + D x log[r].

Thus, the slope estimates the correlation dimension. The alternative regression of
the model consists in nonlinear (power-law) fits to the original model. This
method demands numerical calculations and is generally neglected in favor of the
double-log plots.

Also plotted in Fig, 5b is the best linear fit (dashed) using the following scaling
region:
11, = minimum value of r, r(j corresponds to C(r) < 12500. This fit yields a slope,
i.e. D=15.53+0.05 (1 sigma) and a sum of squared residuals of 3.83x107. The
sum of squared residuals measures the deviation of the fit function from the data
points. The nonlinear regression (solid), using the same scaling region yields
D =4.57 £ 0.03 and a sum of squared residuals of 3.70x 10°. Thus, the same data
points are more precisely described by the nonlinear regression than by the
linear regression after logarithm transformation. Figures 5¢ and 5d focus on
thescaling region, whereby Fig. 5d demonstrates visually the superiority of the
nonlinear regression for the "true" relationship, C(r) o r D The statement that
the loss of the equal spacing between the r-values (when they are logarithmically
transformed) would produce this difference is refuted: The same difference
results if in the double-log plot the spacing between the r-values is equidistant
(compare Fig. 5b). The fact that the linear fit after a log-log transformation
systematically overestimates the correlation dimension is explained by the
following two points: (1) When assuming the original power-law relationship for
true, the log-log transformation produces a violation of the Gauss-Markov
conditions for least-squares regression, such that a biased estimation results (Sen
& Srivastava 1990, page 35; see also Schulz et al. 1994). (2) The overestimation
results from the monotonic growth of the power-law function for positive
exponents. Additionally, the systematic deviation from the power-law, i.e. the
saturation behavior, growing with r, may also contribute to this effect. We,
therefore, choose the nonlinear regression method in order to estimate D. The
problem of the inadequacy of linear transformations for regression purposes (e.g.
for a power-law function) has been demonstrated, e.g. by Riitzel (1976).

Scaling Region

Concerning the scaling region: as the experimental noise is considerably weak,
the results from taking ry in the magnitude of the noise or instead taking rj =
minimum value of r differ only very little from each other; the important value is
ry. Here we decided to determine ryj corresponding to several permitted
maximum values of C(r), i.e.:
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C(r) < 50000 (or 25000, 12500, 6250, 3125.) We know that this is only a first
attempt. An indepth investigation of the problem of the proper choice of the
scaling region must choose whether to define the scaling region via boundaries in
C(r) (as we have done) or boundaries in r, or to measure the quality of the
regression and using that interval which yields the best fit. Also the spacing for
the distances, r, is still arbitrary and should be investigated.

Results

The following dependences of the estimated correlation dimension on the
parameters time lag, scaling region, and embedding dimension resulted:

(i) The dependence of the correlation dimension, D, on the time lag, L, (Fig. 6)
shows that the value of D is not strongly influenced by L above 1 (4.5 ka).
Therefore, the above stated recommendation, to choose L to be in the order
of the correlation time (23.4 ka), does not seem to be a necessary condition
for the determination of D.

5.5 . T : . . T v ,
c(r)<12500

5.0 - b

3.5 - _—  —F T, — -

Fig. 6. Dependence of the estimated correlation dimension, D, on the time lag, L, for
three different values of M. The values of D result from nonlinear regression and ry;
corresponds to C(r) < 12500. L is measured in units of the spacing (4.5 ka) of the time
series. The error bars represent the average standard deviation of the estimated correlation
dimension.
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Fig. 7. Dependence of the estimated correlation dimension, D, on the fit range (scaling
region) for three different values of M. The values of D result from nonlinear regression
and the time lag L=5. The fit range [r[, ry] was: r{, = minimum value of r; the upper
boundary, ryj, corresponds to C(r) < 50000, resp., 25000, 12500, 6250, 3125 (x-axis).

(ii) The dependence on the scaling region (Fig. 7) underlines the strong
influence of the upper boundary, ry;. However, our method of handling the
problem of the proper choice of the scaling region is not sufficient to give a
detailed recommendation.

(iii) The dependence of the correlation dimension, D, on the embedding
dimension, M, (Fig. 8), displays no saturation behavior. Hence, no low-
dimensional attractor exists for the investigated climate system. This
statement holds true also when the uncertainties concerning the proper
choice of the time lag, L, and the upper boundary of the scaling region, [,
are considered. As Figures 6 and 7 show, for a variety of values of L and r;
the correlation dimension, D, increases when M is increased. When
following the restriction M < 5, respectively D < 5.5, from above (section
"The GP-method...",a) due to the limited number of data points, the
statement changes to: there is no attractor with D <4 (fig. 8), respectively
D <5.5. This high dimension of the attractor compounds further the problem
of , short* time series.

(iv) In addition, all calculations were performed on the linear defrended data
points (compare Fig. 3) yielding the same results.
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Fig. 8. Dependence of the estimated correlation dimension, D, on the embedding
dimension, M. The values of D result from nonlinear regression. The time lag, L, is 5, and
1y corresponds to C(r) < 12500.

Conclusions

The Grassberger-Procaccia method to estimate the correlation dimension from a
time series was applied to paleoceanographic data which reflect the global
climatic variations over the last five million years.

It can be shown that the conventionally used double-log plots and linear fits
systematically overestimate the correlation dimension. Therefore, nonlinear fits
need to be calculated.

The value of the time lag, L, while greater than 4.5 ka, does not have a strong
influence on the estimated dimension.

The choice of the upper boundary of the scaling region, r(j, however, does have
a strong influence on the estimated dimension. This effect will be studied in
detail in the future.

Based on the present state of the GP-method we conclude: the long-term
climatic system described by our deep-sea sediment core does not show a low-
dimensional attractor.

Finally, considering the points of critique from above, we suspect that by the
means of the GP-method, at the present state of knowledge, only the rejection of
low-dimensional attractors in natural systems may be possible.

Our future research will include the investigation of (i) distinct time intervals,
e.g the Pliocene ("warm") and the Pleistocene (“"cold"/ "oscillating"), (ii)
additional high-resolution paleoclimatic data records; and (iii) synthetic time
series for comparison purposes.
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