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Preface

Climate is a paradigm of a complex system. Analysing climate data
is an exciting challenge. Analysis connects the two other fields where
climate scientists work, measurements and models. Climate time series
analysis uses statistical methods to learn about the time evolution of
climate. The most important word in this book is “estimation.” We
wish to know the truth about the climate evolution but have only a
limited amount of data (a time series) influenced by various sources of
error (noise). We cannot expect our guess (estimate), based on data,
to equal the truth. However, we can determine the typical size of that
deviation (error bar). Related concepts are confidence intervals or bias.
Error bars help to critically assess estimation results, they prevent us
from making overstatements, they guide us on our way to enhance the
knowledge about the climate. Estimates without error bars are useless.

The complexity of the climate system and the nature of the mea-
surement or modelling act may introduce (1) non-normal distributional
shape, (2) serial dependence, (3) uneven spacing and (4) timescale uncer-
tainties. These difficulties prohibit in many cases the classical statistical
approach to derive error bars by means of calculating the theoretical dis-
tribution of the estimates. Therefore we turn to the bootstrap approach,
which generates artificial resamples of the time series in the computer,
repeats for each resample the estimation (yielding the replication) and
calculates the error bars from the distribution of the replications. The
typical number of replications is 2000. This computing-intensive ap-
proach yields likely more realistic error bars.

Still, there is theoretical work to be done: how to best preserve the
shape and serial dependence in the bootstrap resamples, how to estimate
with smallest error bars. Uneven spacing in time series analysis has not
been the preferred study object of statisticians. Timescale uncertainties
and their effect on error bars (widening, but how much?) is almost
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viii Preface

completely unexplored. This book adapts existing and introduces new
bootstrap algorithms for handling such problems.

We test our methods by means of Monte Carlo experiments. When
the true parameter values are known, it is possible to generate random
samples and calculate bootstrap error bars and confidence intervals and
check whether, for example, a 95% confidence interval for the estimated
parameter does indeed contain in 95% of the Monte Carlo runs the known
parameter. The number of Monte Carlo runs is typically 47,500. The
computational burden increases to 2000 × 47,500. To create of this book
required relatively powerful computers. In Chapter 9, we look on what
may become possible when quantum computers exist.

Chapter 1 introduces you to climate time series and their statistical
properties. Chapter 2 gives stochastic models of serial dependence or
persistence, which are needed in Chapter 3, where bootstrap resampling,
the determination of error bars and the construction of confidence inter-
vals is explained. This concludes Part I on fundamental concepts. Chap-
ters 4, 5 and 6 employ the concepts in the univariate setting (Part II),
where the sample consists of only one time series. Chapters 7 and 8 deal
with the bivariate setting (Part III).

Each of the chapters has a section “Background material,” which con-
tains supplementary material from statistics and climatology. You find
also reported “stories”—comments, discussions and replies on certain
papers in a scientific journal. Such exchanges, as also the “discussion”
parts in read statistical papers, provide insight into the production of
science—often more intimate than what polished journal articles reveal.
The chapters have also a section entitled “Technical issues,” where you
find, besides information about numerical algorithms, listed software
with internet links.

Intuition and creativity is needed for developing statistical estimation
techniques for complex problems. Therefore I praise occasionally the
artistic scientist, not at least in response to papers that make derogative
remarks on that capacity. On the other hand, the artist in us must
not forget to look for previous work on the same subject done in other
disciplines and to scrutinize the own development by means of objective
methods, such as Monte Carlo tests.

Regarding the notation, I have tried to find a route between conven-
tion on the one hand and consistency on the other. However, the most
important symbols, including t for sampled time, x for a sampled cli-
mate variable, n for data size and {t(i), x(i)}n

i=1 for a time series sample,
possess their role throughout the book. I take this opportunity to intro-
duce the counterpart of the time series sample, the stochastic process,
{T (i), X(i)}n

i=1. I hope that not only statisticians find that traditional
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Preface ix

distinction (Fisher 1922) between sample (i.e., numbers) and process
(i.e., random variables) useful. Regarding the reference list, this notes
only the first of the places of a publisher and it gives, in square brack-
ets, additional information. This is not done consistently (e.g., the doi
is given mostly to identify more recent papers published by the Ameri-
can Geophysical Union). The author list may be more aptly denoted as
“first-author list.”

The URL for this book is http://www.manfredmudelsee.com/book. It has
the links to the sites of the software (including own products) and the
data. It has also, inevitably, an errata section. As the person respon-
sible for the content, I offer my apologies in advance of the discov-
ered errors, and I thank you for informing me. My email address is
mudelsee@mudelsee.com.

Sincere thanks go to my academic teachers, Augusto Mangini and
Karl Stattegger, and the hosts of my subsequent stays, Howell Tong and
Qiwei Yao, Gerd Tetzlaff, Maureen Raymo and Gerrit Lohmann. They
and the colleagues at the respective institutions (Institute of Environ-
mental Physics at the University of Heidelberg, Germany; today’s Insti-
tute of Geosciences at the University of Kiel, Germany; today’s School of
Mathematics, Statistics and Actuarial Science at the University of Kent,
Canterbury, UK; Institute of Meteorology at the University of Leipzig,
Germany; Department of Earth Sciences at Boston University, USA;
Alfred Wegener Institute for Polar and Marine Research, Bremerhaven,
Germany) helped me to shape my thinking and flourish in the field of
climate time series analysis.

The above and following had an influence, gratefully acknowledged,
on this book via discussing with me or supplying data, knowledge or
literature: Mersku Alkio, Susana Barbosa, Rasmus Benestad, André
Berger, Wolfgang Berger (whom I owe the term “ramp”), Mark Besonen,
Matthias Bigler, Michael Börngen, Armin Bunde, Steven Burns, Dragos
Chirila (who went through the whole manuscript), Ann Cowling, Michel
Cruzifix, Anthony Davison (who went through Chapters 1, 2, 3, 4, 5 and
6 of the manuscript), Cees Diks, Reik Donner, Heinz Engel, Dominik
Fleitmann, Imola Fodor, Eigil Friis-Christensen, Martin Girardin, the
late Clive Granger, Uwe Grünewald, Peter Hall, Gerald Haug, Jonathan
Hosking, Daniela Jacob, Malaak Kallache (who went through Chap-
ter 6), Vit Klemeš, Demetris Koutsoyiannis, Thomas Laepple, Peter
Laut, Martin Losch (who went through Chapter 9), Werner Metz, Al-
berto Montanari, Eric Moulines, Alfred Musekiwa, Germán Prieto, Ste-
fan Rahmstorf, Regine Röthlisberger, Henning Rust, Michael Sarnthein,
Denis Scholz, Michael Schulz, Walter Schwarzacher, Martin Trauth, Di-
etmar Wagenbach, Heinz Wanner, Eric Wolff, Peili Wu and Carl Wunsch.
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x Preface

The computing centres from following institutions provided comput-
ing time: Alfred Wegener Institute and University of Leipzig. Following
institutions gave data: British Antarctic Survey, Cambridge, UK; Global
Runoff Data Centre, Koblenz, Germany; National Oceanic and Atmo-
spheric Administration, Washington, DC, USA. Libraries from following
research institutes and universities helped with literature: Alfred We-
gener Institute, Boston University, University of Massachusetts Boston,
Cambridge, Halle, Hannover, Harvard, Heidelberg, Kassel, Leipzig, Mas-
sachusetts Institute of Technology, Michigan State University and Yale.
Following institutions funded own research that contributed to this book:
British Antarctic Survey, Deutsche Forschungsgemeinschaft, European
Commission, Niedersächsisches Ministerium für Wissenschaft und Kul-
tur and Risk Prediction Initiative.

Rajiv Monsurate helped adapting the Latex style file.
Last, but not least, I thank the editors at Springer as well as former

Kluwer for their patience over the past six years: Chris Bendall, Robert
Doe, Gert-Jan Geraeds, Kevin Hamilton, Lawrence Mysak and Chris-
tian Witschel.

Hannover, Germany
December 2009 Manfred Mudelsee
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Part I

Fundamental Concepts
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Chapter 1

Introduction

Superiority of quantitative methods over qualitative
—Popper

“Weather is important but hard to predict”—lay people and scientists
alike will agree. The complexity of that system limits the knowledge
about it and therefore its predictability even over a few days. It is
complex because many variables within the Earth’s atmosphere, such as
temperature, barometric pressure, wind velocity, humidity, clouds and
precipitation, are interacting, and they do so nonlinearly. Extending the
view to longer timescales, that is, the climate system in its original sense
(the World Meteorological Organization defines a timescale boundary
between weather and climate of 30 years), and also to larger spatial and
further processual scales considered to influence climate (Earth’s surface,
cryosphere, Sun, etc.), does not reduce complexity. This book loosely
adopts the term “climate” to refer to this extended view, which shall
also include “paleoclimate” as the climate within the geologic past.

Man observes nature and climate to learn, or extract information, and
to predict. Since the climate system is complex and not all variables can
be observed at arbitrary spatial and temporal range and resolution, our
knowledge is, and shall be, restricted and uncertainty is introduced. In
such a situation, we need the statistical language to acquire quantitative
information. For that, we take the axiomatic approach by assuming that
to an uncertain event (“it rains tomorrow” or “before 20,000 years the
tropics were more than 5◦C colder than at present”) a probability (real
number between 0 and 1) can be assigned (Kolmogoroff 1933). Statistics
then deciphers/infers events and probabilities from data. This is an

M. Mudelsee, Climate Time Series Analysis, Atmospheric and 3
Oceanographic Sciences Library 42, DOI 10.1007/978-90-481-9482-7 1,
c© Springer Science+Business Media B.V. 2010
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4 1 Introduction

assumption like others in the business: three-dimensional space, time
arrow and causality, mathematical axioms (Kant 1781; Polanyi 1958;
Kandel 2006). The book also follows the optimistic path of Popper
(1935): small and accurately known ranges of uncertainty about the
climate system enable more precise climate hypotheses to be tested,
leading to enhanced knowledge and scientific progress. Also if one shares
Kuhn’s (1970) view, paradigm shifts in climatology have better success
chances if they are substantiated by more accurate knowledge. It is the
aim of this book to provide methods for obtaining accurate information
from complex time series data.

Climate evolves in time, and a stochastic process (a time-dependent
random variable representing a climate variable with not exactly known
value) and time series (the observed or sampled process) are central to
statistical climate analysis. We shall use a wide definition of trend and
decompose a stochastic process, X, as follows:

X(T ) = Xtrend(T ) + Xout(T ) + S(T ) ·Xnoise(T ), (1.1)

where T is continuous time, Xtrend(T ) is the trend process, Xout(T ) is
the outlier process, S(T ) is a variability function scaling Xnoise(T ), the
noise process. The trend is seen to include all systematic or determi-
nistic, long-term processes such as a linear increase, a step change or a
seasonal signal. The trend is described by parameters, for example, the
rate of an increase. Outliers are events with an extremely large absolute
value and are usually rare. The noise process is assumed to be weakly
stationary with zero mean and autocorrelation. Giving Xnoise(T ) stan-
dard deviation unity enables introduction of S(T ) to honour climate’s
definition as not only the mean but also the variability of the state of
the atmosphere and other compartments (Brückner 1890; Hann 1901;
Köppen 1923). A version of Eq. (1.1) is written for discrete time, T (i),
as

X(i) = Xtrend(i) + Xout(i) + S(i) ·Xnoise(i), (1.2)

using the abbreviation X(i) ≡ X(T (i)), etc. However, for unevenly
spaced T (i) this is a problematic step because of a possibly non-unique
relation between Xnoise(T ) and Xnoise(i), see Section 2.1.2.1. The ob-
served, discrete time series from process X(i) is the set of size n of paired
values t(i) and x(i), compactly written as {t(i), x(i)}n

i=1. To restate, the
aim of this book is to provide methods for obtaining quantitative esti-
mates of parameters of Xtrend(T ), Xout(T ), S(T ) and Xnoise(T ) using
the observed time series data {t(i), x(i)}n

i=1.
A problem in climate analysis is that the observation process super-

imposes on the climatic process. Xnoise(T ) may show not only climatic
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1.1 Climate archives, variables and dating 5

but also measurement noise. Outliers can be produced by power loss
in the recording instrument. Non-climatic trends result, for example,
from changing the recording situation. An example is temperature mea-
surements made in a town that are influenced by urbanization (meaning
an increased heat-storage capacity). However, measurement noise can
in principle be reduced by using better instruments, and outliers and
trends owing to the observation system can be removed from the data—
climatologists denote such observation trend free data as homogeneous.

A further problem in real-world climatology is that also the time val-
ues have to be estimated, by dating (Section 1.1). Dating errors are
expected to add to the noise and make the result more uncertain.

Consider a second climate variable, Y (T ), composed as X(T ) in Eq.
(1.1) of trend, outliers, variability and noise. The interesting new point is
the dependence between X(T ) and Y (T ). Take as example the relation
between concentration of CO2 in the atmosphere and the global sur-
face temperature. In analogy to univariate X, we write {X(T ), Y (T )},
{T (i), X(i), Y (i)} and {t(i), x(i), y(i)}n

i=1 for such bivariate processes
and time series. This book describes methods only for uni- and bivari-
ate time series. Possible extensions to higher dimensions are mentioned
in Chapter 9.
{t(i), x(i), y(i)}n

i=1 need not result from the natural climate system
but may also be the output from a mathematical climate model. Such
models attempt to rebuild the climate system by connecting climate vari-
ables with governing mathematical–physical equations. Owing to the
limited performance of computers and the uncertain knowledge about
climatic processes, climate models are necessarily limited in spatial, pro-
cessual and temporal resolution (McAvaney et al. 2001; Randall et al.
2007). On the other hand, climate models offer the possibility to perform
and repeat climate experiments (say, studying the influence of doubled
concentrations of CO2 in the atmosphere on precipitation in dependence
on different model implementations of the role of clouds).

1.1 Climate archives, variables and dating
Climate archives “contain” the time series. The measured variables

(x(i), y(i)) either are of direct interest, as in case of precipitation and
temperature, or they bear indirect information (indicator or proxy vari-
ables). The estimated times (t(i)), in geosciences often called timescale,
are obtained either by direct, absolute dating methods or indirectly by
comparison with another, dated time series. Table 1.1 gives an overview
about climate archives and absolute dating methods. Table 1.2 informs
about climate variables and their proxies studied in this book. More
details are provided in Figs. 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and
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6 1 Introduction

Table 1.1. Main types of climate archives, covered time ranges and absolute dating
methods.

Dark shading means “frequently used,” light shading means “occasionally used.” Pl.,
Pliocene; b.p., “before the present.” Background material (Section 1.6) gives details and
references on geological epochs (also before Pliocene), archives and dating.

1.10, where some of the time series analysed in this book are presented,
and in the background material (Section 1.6).

1.2 Noise and statistical distribution
The noise, Xnoise(T ), has been written in Eq. (1.1) as a zero-mean and

unit-standard deviation process, leaving freedom as regards its other sec-
ond and higher-order statistical moments, which define its distributional
shape and also its spectral and persistence properties (next section). The
probability density function (PDF), f(x), defines

prob (a ≤ Xnoise(T ) ≤ a + δ)|δ→0 =

a+δ∫
a

f(x)dx, (1.3)

putting our incomplete knowledge in quantitative form.
For analysing, by means of explorative tools, the shape of f(x) using

time series data {t(i), x(i)}n
i=1, it is important to estimate and remove

the trend from the data. An unremoved trend would deliver a false,
broadened picture of f(x). Trend removal has been done for constructing
Fig. 1.11, which shows histograms as estimates of the distributions of
Xnoise(T ) for various climate time series. The estimation of trends is
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1.2 Noise and statistical distribution 7

Table 1.2. Climate archives and variables studied in this book (selection).

Climate archive Location Time 
range (a)

Proxy variable Resolu-
tion (a) 

Climate variable 

 

Marine sediment core 
 

Eastern 
 

106 
 

δ18O, benthic 
 

103 
 

Ice volume, 
 equatorial  foraminifera  bottom water 
 Pacific    temperature 
 

Ice core 
 

Antarctica 
 

105 
 

CO2, air bubbles 103 CO2, atmosphere 
   δD, ice 102 Air temperature 
 Greenland 105 SO4 content, ice 100 Volcanic activity 
   Ca content, ice 100 Aeolian dust, wind
   Dust content, ice 100 Aeolian dust, wind
   Conductivity,  100 Soluble material,  
   ice  wind 

   Na content, ice 100 Seasalt, wind 
 

Tree-rings 
 

Worldwide 
 

104 
 

Δ14C, wood 
 

100 
 

Solar irradiance, 
     ocean circulation 
 

Lake sediment core 
 

Boston area 
 

103 
 

Varve thickness 
 

100 
 

Wind  
 

Speleothem 
 

Southern Oman
 

104 
 

δ18O, carbonate 
 

101 
 

Monsoon rainfall 
 

Documents 
 

Weikinn 
 

103  
 

100 
 

Floods, river Elbe 
 source texts     
 

Climate model 
 

Hadley Centre, 
HadCM3 

 

102  
 

100 River runoff 

 

Direct measurements 
 

Siberia, 
North Atlantic 

 

102  
 

10–1 
 

Surface 
temperature 

 

Time range refers to the length of a record, resolution to the order of the average time
spacing (see Section 1.4). “Proxy variable” denotes what was actually measured on which
material. “Climate variable” refers to the climatic variations recorded by the variations in
the proxy variable. The ability of a proxy variable to indicate a climate variable depends
on the characteristic timescales (between resolution and time range). For example, δ18O
variations in benthic foraminifera over timescales of only a few decades do not record ice-
volume variations (which are slower). The Weikinn source texts are given by Weikinn (1958,
1960, 1961, 1963, 2000, 2002).
a Electrical conductivity of the melted water.
b Extremely thick varves (graded beds) indicate extremely high wind speed (hurricane).

one of the primary tasks in climate time series analysis and described in
Chapter 4. In Fig. 1.11, outliers, sitting at the tail of the distribution,
are tentatively marked. The variability, S(T ), has only been normalized
in those panels in Fig. 1.11 where it is not time-constant.

As the histogram estimates of the PDFs reveal, some distributions
(Fig. 1.11b, i, j) exhibit a fairly symmetrical shape, resembling a Gaussian

a

b
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Figure 1.1. Documentary data: floods of the river Elbe during winter over the
past 1000 years. x, the flood magnitude, is in three classes (1, minor; 2, strong;
3, exceptionally strong). Hydrological winter is from November to April. Data for
t ≤ 1850 were extracted from Curt Weikinn’s compilation (Weikinn 1958, 1960, 1961,
1963, 2000, 2002) of source texts on hydrography in Europe; accuracy of flood dates is
∼ 1 month. Data for t > 1850 were inferred from daily measurements of water stage
and runoff (volume per time interval) at Elbe station Dresden (Global Runoff Data
Centre, Koblenz, Germany) via a calibration of magnitude versus water stage/runoff
(Mudelsee et al. 2003). Because floods can last up to several weeks, only the peaks in
stage/runoff were used to ensure independence of the data. Total number of points is
211. Data sparseness for t / 1500 is likely caused by document loss (inhomogeneity).
One climatological question associated with the data is whether floods occur at a
constant rate or there is instead a trend. (Data from Mudelsee et al. 2003.)

(Fig. 3.1). Other PDFs (Fig. 1.11c–h, k), however, have more or less
strongly right-skewed shape. Possibly Fig. 1.11d (Vostok δD) reflects a
bimodal distribution.

Table 1.3 informs about the size of the variability, S(T ), in relation
to the uncertainty associated with the pure measurement for the time
series analysed here. S(T ) reflects the variability of the climate around
its trend (Eq. 1.1), the limited proxy quality when no directly measured
variables are available and, finally, measurement error. As is evident
from the data shown, the measurement error is often comparably small
in climatology. It is in many studies that use proxy variables one of the
major tasks to quantify the proxy error. For example, if δ18O in shells
of benthic foraminifera from deep-sea sediment cores is used as proxy
for global ice volume, bottom-water temperature fluctuations make up
nearly 1/3 of S(T ), see Table 1.3.

A relation proxy variable–climate variable established under labora-
tory conditions is not perfect but shows errors, quantifiable through
regression (Chapter 8). Assuming that such a relation holds true also in
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Figure 1.2. Marine sediment core data: δ18O record from Ocean Drilling Program
(ODP) site 846 (eastern equatorial Pacific) within 2–4 Ma. The core was drilled
from a ship through ∼ 3300 m water into the ocean floor, it has a length of ∼
460 m and a diameter of ∼ 35 cm. The oxygen isotope record (Shackleton et al.
1995b) was measured on the calcareous shells of benthic foraminifera, mainly C.
wuellerstorfi and Uvigerina spp., using a mass spectrometer. Values are given in delta
notation: δ18O =

[
(18O/16O)sample/(18O/16O)PDB − 1

]
· 1000h, where (18O/16O) is

the number ratio of oxygen isotopes 18O and 16O and PDB is “Pee Dee Belemnite”
standard. A value of 0.64h was added to all δ18O values from C. wuellerstorfi to
correct for a species-dependent offset (Shackleton and Hall 1984). The depth scale
was transformed into a timescale in several steps (Shackleton et al. 1995a). First,
biostratigraphic positions, that is, core depths documenting first or last appearances of
marine organisms, provided a rough time frame. (Unlike many other marine sediment
cores, site ODP 846 lacks a magnetostratigraphy, that is, recorded events of reversals
of the Earth’s magnetic field, which might had improved the temporal accuracy at
this step.) Second, a proxy record of sediment density was measured using a gamma-
ray attenuation porosity evaluation (GRAPE) tool. Third, the ODP 846 GRAPE
record was tuned (Section 1.6) to the combined GRAPE record from ODP sites 849,
850 and 851. This stacked GRAPE record had in turn been previously tuned to the
time series of solar insolation at 65◦N (Berger and Loutre 1991), calculated using
standard procedures from astronomy. The reason behind this cross-tuning procedure
is the observation (Hays et al. 1976) that Earth’s climatic variations in the order of
tens of thousands to several hundreds of thousands of years are influenced by solar
insolation variations. Since the sedimentation rate in the geographic region of site
ODP 846 varies with climate (Shackleton et al. 1995a), one cannot assume a constant
accumulation of the marine archive. Hence, the dates of sediment samples between
the biostratigraphic fixpoints cannot be obtained by interpolation and the GRAPE
density records had to be used to obtain an absolute timescale by tuning. Note
that time runs “in paleoclimatic manner” from the right to the left. In the same
fashion, the δ18O scale is inverted such that glacial conditions (large ice volume, low
bottom water temperature or large δ18O values) are indicated by the bottom part
and interglacial conditions by the top part of the plot. The number of data points,
n, within the shown interval is 821, the average spacing is ∼ 2.4 a. A comparison
between absolutely dated and tuned magnetostratigraphic timescales for the Pliocene
to early Pleistocene (Mudelsee 2005) suggests an average age deviation of ∼ 25 ka; this
value can also serve to indicate the magnitude of the absolute error of the ODP 846
timescale. The record indicates variations in global ice volume and regional bottom
water temperature. One task is to quantify the long-term δ18O increase, which reflects
the glaciation of the northern hemisphere in the Pliocene.
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Figure 1.3. Ice core data: deuterium and CO2 records from the Vostok station
(Antarctica) over the past 420,000 years. The core was drilled into the ice (diameter:
12 cm, length: 3623 m) and recovered in segments. The deuterium record (a) was
measured on ice material using a mass spectrometer. Values are given in delta nota-
tion: δD = [(D/H)sample/(D/H)SMOW − 1] · 1000h, where (D/H) is the number of D
particles over the number of H particles and SMOW is “Standard Mean Ocean Wa-
ter” standard. Total number of points, n, is 3311. The CO2 record (b) was measured
on air bubbles enclosed in the ice. Values are given as “parts per million by volume,”
n is 283. In b, values (dots) are connected by lines; in a, only lines are shown. The
present-day CO2 concentration (∼ 389 ppmv) is not recorded in b. The construction
of the timescale (named GT4) was achieved using a model of the ice accumulation
and flow. Besides glaciological constraints, it further assumed that the points at 110
and 390 ka correspond to dated stages in the marine isotope record. Construction of
the CO2 timescale required additional modelling because in the ice core, air bubbles
are younger in age than ice at the same depth. One climatological question associ-
ated with the data is whether variations in CO2 (the values in air bubbles presenting
the atmospheric value accurately) lead over or lag behind those of deuterium (which
indicate temperature variations, low δD meaning low temperature). (Data from Petit
et al. 1999.)

the geologic past increases the proxy error. Spatially extending the range
for which a variable is thought to be representative is a further source of
error. This is the case, for example, when variations in air temperature
in the inversion height above Antarctic station Vostok are used to repre-
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Figure 1.4. Ice core data: sulfate record from the NGRIP core (Greenland) over the
interval from ∼ 10 to ∼ 110 ka. The sulfate content was determined by continuously
melting the ice core along its axis and measuring SO4 of the melt water by means of a
photometer (continuous flow analysis, CFA; see Röthlisberger et al. (2000) and Bigler
et al. (2002)); ppbw, parts per billion by weight. Meltspeed and signal dispersion
limit the length resolution to ∼ 1 cm over the measured record length (1530 m). In
the young part of the record (t ≤ 105 ka), the NGRIP timescale was obtained by
tuning to the ss09sea timescale of the Greenland GRIP ice core (Johnsen et al. 2001)
using the records of ice isotopes (North Greenland Ice Core Project members 2004),
electrical conductivity and dielectric properties. In the old part, the NGRIP timescale
was obtained by tuning to the GT4 timescale of the Vostok ice core (Fig. 1.3) using
the records of δ18O and methane concentration. (An absolutely dated alternative to
the GRIP ss09sea timescale was published by Shackleton et al. (2004).) The sulfate
record was finally averaged to 1-year resolution. Using the Ca and Na records, proxies
for mineral dust and seasalt content, respectively, it is possible to remove peaks in
the sulfate record from dust and salt input—the remaining peaks in the “excess” SO4

record, shown here, likely reflect the input from volcanic eruptions via the atmosphere.
The record therefore bears the possibility to reconstruct volcanic activity throughout
the last glacial period. (Data from Bigler M 2004, personal communication.)

sent those of the total southern hemisphere. However, such uncertainties
are often unavoidable when general statements about the climate system
are sought. All individual noise influences on a climate variable (natural
variability, proxy and measurement noise) seem to produce a process
Xnoise(T ) with a PDF that is better described by a product than a sum
of individual PDFs and that likely has a right-skewed shape, such as the
lognormal distribution (Aitchison and Brown 1957).

1.3 Persistence
The other property of Xnoise(T ) besides distributional shape regards

serial dependence. The autocovariance, E [Xnoise(T1) ·Xnoise(T2)] for
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Figure 1.5. Ice core data: Ca concentration (a), dust content (b), electrical con-
ductivity (c) and Na concentration (d) from the NGRIP core (Greenland) during
the onset of Dansgaard–Oeschger (D–O) event 5. The four variables were measured
using CFA on the melted water (Fig. 1.4). ppb, parts per billion; ml−1, number
of particles per ml; Sm−1, SI unit for electrical conductivity. A data gap (hiatus)
exists at around 32,550 a in the dust-content record. Records were “downsampled”
to annual resolution. The Ca record indicates variations of mineral dust transported
to the atmosphere over Greenland, the dust content indicates atmospheric dust load,
electrical conductivity is a proxy for input of soluble material (integrating various
environmental signals) and Na is a proxy for seasalt. One climatological question is
whether the changes in all four variables happened simultaneously at the onset of
D–O event 5. D–O events are short-term warmings during the last glacial period.
(Data from Röthlisberger R 2004, personal communication.)
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Figure 1.6. Tree-ring data: record of atmospheric radiocarbon content over the past
12,410 years. The tree-ring radiocarbon equilibrates with atmospheric radiocarbon
via the photosynthetic cycle. The 14C radioactivity was measured by counting the
β particles on CO2 produced by combusting the wood material. Original sampling
resolution was yearly (individual tree-rings) and lower; data shown are 5-year averages
(n = 2483). The values are presented in delta notation (Fig. 1.3) with the oxalic acid
standard of the National Bureau of Standards, for conventional reasons “∆” is used
instead of “δ.” The timescale (given as years before present (b.p.) where “present”
is, as in “radiocarbon terminology,” the year 1950) is based on a counted tree-ring
chronology, established by matching radiocarbon patterns from individual trees. Since
the age spans of the trees overlap, it is possible to go back in time as far as shown
(and beyond). Since the radiocarbon data act as a proxy for solar activity (high
∆14C means low solar irradiance), it is possible to analyse Sun–climate connections
by studying correlations between ∆14C and climate proxy records. (Data from Reimer
et al. 2004.)

T1 6= T2, is here of interest; higher-order moments are neglected. Lag-1
scatterplots (x(i − 1) versus x(i)) of the climate time series, using de-
trended {t(i), x(i)}n

i=1 as realizations of the noise process, explore the
autocovariance structure (Fig. 1.12). It is evident that all examples ex-
hibit a more or less pronounced orientation of the points along the 1:1
line. This indicates positive serial dependence, or “memory,” also called
persistence in the atmospheric sciences. The reason for that memory
effect is twofold. First, it is characteristic for many types of climatic
fluctuations (Wilks 1995). Second, it can be induced by the sampling
of the data. A record sampled at high resolution has often stronger
persistence than when sampled at low resolution (see next section).

The lag-1 scatterplots (Fig. 1.12) reflect also the right-skewed shape
of many of the distributions (more spreading towards right-up) and let
some outliers appear.
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Figure 1.7. Speleothem data: oxygen isotope record from stalagmite Q5 from south-
ern Oman over the past 10,300 years. Along the growth axis of the nearly 1 m long sta-
lagmite, every ∼ 0.7 mm about 5 mg material (CaCO3) was drilled, yielding n = 1345
samples. The carbonate powder was analysed with an automatic preparation system
linked to a mass spectrometer to determine the δ18O values. (The (18O/16O) ra-
tio is given relative to the Vienna Pee Dee Belemnite (VPDB) standard analogously
to the description in Fig. 1.3.) The timescale (years before 1950) is based on 18
U/Th mass-spectrometric ages, obtained on separated and purified material. Dates
for samples between absolutely dated positions were obtained by linear interpolation.
Time runs from right to left. The δ18O scale is inverted “in paleoclimatic manner”
so that the transition from the last glacial to the present Holocene interglacial at
around 10 ka is “upwards.” Note that growth of stalagmite Q5 ceased at ∼ 2740 a
b.p. Climatological questions associated with the data are whether the transition to
the Holocene occurred synchronously with climatic transitions in other locations and
whether there exist solar influences on the variations in monsoon rainfall (indicated
by δ18O variations, low δ18O reflecting strong monsoon). (Data from Fleitmann et al.
2003.)

1.4 Spacing
Archives other than documentary collections or climate models require

measurements on the archive material. Material-size requirements lead
in many cases to a constant length interval, L(i), from which material for
one measurement is taken, and also the length spacing, l(i), between the
measurement mid-points on the length axis is often constant (Fig. 1.13).
Dating transfers from length into the time domain with the “sample du-
ration,” D(i), and the temporal spacing, d(i) = t(i) − t(i − 1), here in
this book briefly denoted as “spacing.” The spacing is frequently noncon-
stant: archives normally accumulate not at a constant rate. They might
also be subject to postdepositional length distortions such as compress-
ing in the case of ice cores. Archives that allow pre-sampling (visual)
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Figure 1.8. Lake sediment core data: varve thickness record from Lower Mystic Lake
(Boston area) over the past 1000 years. Multiple overlapping cores were retrieved from
the lake, split and photographed in the laboratory. The sediments consist of varves of
alternating siliciclastic (bright) and biogenic (dark) layers. The total combined length
of the records is about 2 m. Sediment blocks extracted from cores were embedded
in epoxy resin to produce petrographic thin sections and X-ray densitometry slabs.
A master, composite sequence of stratigraphy was constructed from high-resolution
imagery of observations made via petrographic microscopy, back scattered electron
microscopy and X-ray densitometry (Besonen 2006). Age control from varve counting
was confirmed by means of radiocarbon dating on terrestrial macrofossils. In addition
to varve thickness, Besonen (2006) determined the dates of graded beds based on
visual examination of the petrographic thin sections and X-ray imagery. A thick varve
and a graded bed can be jointly used as a proxy for hurricane activity in the area of
the lake. Hurricane-strength precipitation saturates the watershed, results in erosive
overland flow that entrains sediment and carries it into the lake where it is deposited
as a graded bed. This is enhanced by hurricane-strength winds that disturb vegetation
and uproot trees, exposing loose sediment (Besonen 2006). The proxy information
was verified by means of pollen data and documentary information (available from
about 1630 to the present). The time series (n = 877) covers the interval from a.d.
1011 to 1897, minor hiatuses are present (1720–1721, 1803, 1812–1818), also a major
above the depth corresponding to 1897. The record bears information on hurricane
activity in the Boston area over the past 1000 years. (Data from Besonen et al. 2008.)
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Figure 1.9. Climate model data: runoff from Arctic rivers. a Natural forcing only; b
combined anthropogenic and natural forcing. In a climate model, the physical equa-
tions for energy, momentum and mass conservation are numerically solved in time
steps over a spatial grid. HadCM3 (Gordon et al. 2000) is a coupled Atmosphere–
Ocean General Circulation Model (AOGCM) for the global domain, run by the Hadley
Centre for Climate Prediction and Research, Bracknell, United Kingdom. The at-
mospheric component has a horizontal grid spacing of 2.5◦ in latitude by 3.75◦ in
longitude and 19 vertical levels. The oceanic component has 20 vertical levels on
a 1.25◦ by 1.25◦ grid. The time step used for integrating the differential equations
representing the atmospheric component was 30min, for the oceanic component one
hour. The total interval simulated (∼ 140 years) was longer than the data shown (a
1900–1996; b 1929–2001). Plotted are annual-mean ensemble averages, for which the
model year starts on 1 December. The averages were constructed from four ensemble
runs, that is, runs with identical forcings but different initial conditions. The initial
conditions used were taken from states separated by 100 years in a HadCM3 run, in
which external forcings where set to have no year-to-year variations (“control run”).
Unlike previous models, HadCM3 does not require flux adjustments of heat and water
at the air–sea interface to maintain a stable climate without drift behaviour (Johns
et al. 1997; Stott et al. 2000). This makes the results obtained with HadCM3 more
reliable than previous results. The natural forcing included changes in the amount of
stratospheric aerosols stemming from volcanic eruptions and variations in solar irra-
diation. The anthropogenic forcing included changes in atmospheric concentrations
of CO2, methane, sulfate aerosols and ozone. The river runoff records were generated
(Wu et al. 2005) by summing the precipitation contributions from affected grid cells
north of 65◦N. Model simulations can be used to analyse past and forecast future
climate changes. Questions associated with the data are those after the size and the
timing of changes in runoff as a result of an intensified hydrological cycle caused by
anthropogenically induced warming. (Data from Wu et al. 2005.)
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Figure 1.10. Measured data: surface air temperature records from Siberia (a) and
North Atlantic (b). Data are monthly temperature anomalies with respect to the
1961–1990 means from a gridded, global set. Siberia is presented by the grid cell
50–55◦N, 90–95◦E, effectively reflecting station Krasnojarsk; the North Atlantic by
35–40◦N, 25–30◦W. Shown are the gap-free time intervals (a May 1920 to November
1991, n = 859; b July 1879 to July 2004, n = 1501). The annual cycles were removed
by subtracting the monthly averages. (Raw data from Jones and Moberg 2003.)

detection of time-equidistant sampling points, such as tree-rings, varves
(that is, annually laminated sediments) or speleothems (Fig. 1.14), ap-
pear to be the exception rather than the rule. That mixture of determi-
nistic and stochastic influences on the spacing, is pictured in Fig. 1.15.
The Elbe floods (Fig. 1.1) are an example where d(i) (or equivalently
t(i)) is the major research object, not x(i), see Chapter 6.

The nonzero sample duration, D(i), imposed by material require-
ments, can be subject to extension to D′(i) by diffusion-like processes
in the archive (Fig. 1.13). Besides physical diffusion of material, for
example in ice cores, bioturbation in sedimentary archives (mixing by
activities of worms and other animals in the upper (young) layer) can
play a role. The other data archives studied here (Table 1.1) likely have
no diffusion effects.
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Figure 1.11. Statistical noise distributions of selected climate time series. a ODP
846 δ18O; b Vostok CO2; c Vostok δD; d NGRIP SO4; e NGRIP Ca; f NGRIP
dust content; g NGRIP electrical conductivity; h NGRIP Na; i tree-ring ∆14C; j Q5
δ18O; k Lower Mystic Lake varve thickness; l HadCM3 runoff. The distributions are
estimated with histograms. Data and units are given in Figs. 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8 and 1.9. In a and e–h, the trend component was estimated (and removed
prior to histogram calculation) using a ramp regression model (Figs. 4.6 and 4.7); in
b and c using a harmonic filter (Section 5.2.4.3); in d and k using the running median
(Figs. 4.16 and 4.17); in i using nonparametric regression (Fig. 4.14); in j using a
combination of a ramp model in the early and a sinusoidal in the late part (Fig. 4.18);
and in l using the break regression model (Fig. 4.12). Outliers are tentatively marked
with open circles (note broken axes in d, k). In c, the modes of the suspected bimodal
distribution are marked with arrows. In a, e–h and j, time-dependent variability,
S(T ), was estimated using a ramp regression model (Chapter 4); in d and k using
the running MAD (Figs. 4.16 and 4.17); and in l using a linear model. Normalizing
(dividing by S(T )) for those time series was carried out prior to histogram calculation.
The other time series assume constant S(T ), values are given in Table 1.3.
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Figure 1.12. Persistence of noise in selected climate time series. a ODP 846 δ18O;
b Vostok CO2; c Vostok δD; d NGRIP SO4; e NGRIP Ca; f NGRIP dust content; g
NGRIP electrical conductivity; h NGRIP Na; i tree-ring ∆14C; j Q5 δ18O; k Lower
Mystic Lake varve thickness; l HadCM3 runoff. Noise data are shown as lag-1 scat-
terplots (in each panel, x(i−1) is plotted on the ordinate against x(i) on the abscissa
as points), together with 1:1 lines (grey). Data and units are given in Figs. 1.2, 1.3,
1.4, 1.5, 1.6, 1.7, 1.8 and 1.9. Detrending and S(T ) normalization prior to analysis
was carried out as in Fig. 1.11. Note that in d, all points are shown (unlike as in Fig.
1.11d). Outliers are tentatively marked with open circles.
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Table 1.3. Measurement and proxy errors in selected climate time series (Table 1.2).

Archive V ariable Error range

Total, S(T ) Measurement Proxy

Marine core δ18O 0.2–0.3ha 0.06hb ∼ 1/3c

Ice core CO2 content 17.5 ppmva 2–3 ppmvd Smalle

δD 10.5ha ≤ 1hd 7hf

SO4 content 40.5 ppbwg 10%h Unknowni

Ca content 43 ppbj 10%h Unknowni

Dust content 0.56 · 105 ml−1 j 10%h Unknowni

Conductivity 0.37 µS cm−1 j 10%h Unknowni

Na 28 ppbj 10%h Unknowni

Tree-rings ∆14C 6.2ha ∼ 2hk Smalll

Speleothem δ18O 0.25ha 0.08hm Unknownn

Lake core Varve thickness 0.33 mmg 0.1 mmo NAp

Climate model River runoff 93 km3a−1 q 0 NA
Direct measure- Temperature 0.69◦Cr 0.03◦Cs 0
ment 2.97◦Ct 0.03◦Cs 0

Measurement errors were usually determined using repeated measurements. Proxy errors
refer to the climate variables in Table 1.2 unless otherwise noted. NA, not applicable.
a Standard deviation of detrended {t(i), x(i)}n

i=1 (Fig. 1.11).
b Shackleton et al. (1995b).
c As ice-volume indicator, relative error. This error comes from other variations than of ice
volume: mainly of bottom water temperature and to a lesser degree of salinity (Mudelsee
and Raymo 2005).
d Petit et al. (1999).
e Raynaud et al. (1993).
f As air-temperature indicator; own determination of MS

1/2
E (Eq. 4.8) after Jouzel et al.

(2007: Fig. S4 therein).
g Average MAD value (Figs. 4.16 and 4.17), divided by 0.6745 (a standard normal distribution
has an MAD of ∼ 0.6745).
h Relative error (Röthlisberger et al. 2000).
i Trace substances are part of a complex system, involving variations at the source, during
transport (wind) and at deposition; they represent a more local or regional climate signal.
j Time-average of Ŝ(i) (Fig. 4.7).
k Reimer et al. (2004).
l ∆14C in tree-rings on yearly to decadal resolution has a (small) proxy error as atmospheric
∆14C indicator because the wood formation is not constant (the major portion is formed in
spring and early summer) and because tree-ring thickness varies (Stuiver et al. 1998). ∆14C
variations are a good proxy of solar activity variations because other influences (variations in
ocean circulation, changes in the intensity of the Earth’s magnetic field) are weak on Holocene
timescales (Solanki et al. 2004).
m Fleitmann et al. (2003).
n Unknown on longer timescales (Table 1.2) because observed monsoon rainfall time series
(Parthasarathy et al. 1994) are too short (150 a) to permit comparison.
o Time-average; depends on varve distinctiveness and human component (Besonen MR 2010,
personal communication).
p Only information about hurricane existence sought, not about hurricane strength.
q Time-average of Ŝ(i) (Fig. 4.12).
r North Atlantic, time-average.
s Upper limit (Tetzlaff G 2006, personal communication).
t Siberia, time-average.
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Figure 1.13. Sampling of time series from climate archives. The archive, document-
ing climate over a time span, is sampled (depth domain), dated (time domain) and
possibly interpolated to an evenly spaced time grid. τ denotes a typical timescale of
climatic fluctuations, Xnoise(T ). L(i), length over which material is sampled (dark
shading); l(i), length spacing between mid-points of L(i); D(i), time-domain ana-
logue of L(i); d(i), time-domain analogue of l(i), denoted as “spacing.” Light shading
indicates effects of a diffusion-like process, that is, extension of D(i) to D′(i). Diffu-
sion need not act symmetrically. Thick vertical lines indicate t(i). Terms “sediment
core”, “ice core”, etc. denote here the sampling type rather than a specific archive
(for example, a speleothem is often sampled like a “sediment core”). In case of ice
cores, t(i) often is not the average time but the time at the upper end of the sam-
ple. Real ice cores contain two sub-archives, ice material and enclosed air bubbles,
with different age–depth relations (Chapter 8). Interpolation to a fine grid (“upsam-
pling”) introduces a strong additional dependence in addition to climatic dependence;
“downsampling” introduces weak or no additional dependence. High-resolution time
series (d(i) small) have the advantage that this effect is weaker than for low-resolution
records. (Note that our usage of “grid” is not restricted to two dimensions.)

The sampled time series {t(i), x(i)}n
i=1 carries information about ob-

served climatic variations up to an upper bound equal to the record
length and down to a lower bound of

max
(
τ,D′(i), d̄

)
, (1.4)
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where d̄ is the average of d(i). Whereas the upper bound is obvious,
the lower bound is explained as follows. The “persistence time,” τ ,
of the climatic noise measures the decay of the autocorrelation func-
tion (“memory loss”) of Xnoise(T ), see Chapter 2. Deterministic influ-
ences acting on shorter timescales are by definition (Eq. 1.1) not part
of the description. Information within interval D′(i) is lost by the sam-
pling process and eventual diffusion. Information theory shows that for
evenly spaced time series (d(i) = d = const.) the lower limit is 2 d (or
one over Nyquist frequency). The factor 2 is omitted in Eq. (1.4) be-
cause for uneven spacing the bound may be lower than for even spacing
(Chapter 5).
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Figure 1.14. Plain-light photomicrograph from a polished section of stalagmite S3
from southern Oman. U/Th dating of samples and the seasonally varying monsoon
precipitation pattern in the geographic region suggest that the laminae are annual.
Dark (bright) layers reflect a higher (lower) density of pores and fluid inclusions
(Fleitmann 2001). The stalagmite covers the period from approximately a.d. 1215 to
1996. Annual layer thickness and oxygen isotopic (δ18O) composition, measured on
the stalagmite, record variations in the intensity of Indian monsoonal rainfall. (From
Burns et al. (2002), with permission from the publisher).

Interpolation of the unevenly spaced time series {t(i), x(i)}n
i=1 is in cli-

matology usually done to obtain an evenly spaced series {t′(i), x′(i)}n′

i=1.
This series can then be analysed with sophisticated statistical methods
for which currently only implementations exist that require even spac-
ing. This advantage, however, is accompanied by following disadvan-
tages. First, additional serial dependence can be introduced, depending
mainly on n′. If n′ > n (“upsampling”), that effect is strong (Fig. 1.13).
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Figure 1.15. Spacing of selected climate time series. a ODP 846 δ18O; b Vostok CO2;
c Vostok δD; d NGRIP SO4; e Q5 δ18O. Data are given in Figs. 1.2, 1.3, 1.4 and 1.7.
In d, d(i) is shown for the D(i) = 0.5 cm data; the time series with t(i) = 1 a (Fig.
1.4) is obtained from the 0.5-cm data using “downsampling.” The ice core data (b–d)
reflect to some degree the effects of ice compaction, that means, d(i) increases with
t(i). The Q5 speleothem spacing time series (e) suggests visually a strong negative
correlation with the speleothem δ18O series (Fig. 1.7). This is explained as follows.
Low (high) δ18O means strong (weak) Indian monsoonal rainfall, this in turn faster
(slower) movement of the rainwater through the soil, weaker (stronger) uptake of soil-
CO2, lower (higher) pH of the water, reduced (enhanced) solution of soil-carbonate,
less (more) material for calcite precipitation, small (large) annual stalagmite layers
and, finally, a higher (lower) temporal spacing because the depth spacing is nearly
constant (Fig. 1.7). Note that at places with other soil properties, the relation δ18O–
spacing may be different (Burns et al. 2002). The values of the average spacing, d̄, and
the coefficient of variation of spacing, CVd, which is defined as the standard deviation
of the spacing divided by d̄, are as follows. a d̄ = 2.40 a, CVd = 0.41; b d̄ = 1.46 a,
CVd = 0.82; c d̄ = 0.13 a, CVd = 0.85; d d̄ = 0.32 a, CVd = 0.47; e d̄ = 5.62 a,
CVd = 0.49.

If n′ ≈ n it is weaker, and only for n′ < n (“downsampling”) it may
be absent. That means, interpolation does not allow to go in resolution
below the limit set by Eq. (1.4). Second, depending on the type of in-
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terpolation method (linear, cubic spline, etc.), x′(i) may show serious
deviations from x(i) in terms of variability or noise properties. That is,
interpolation takes us a step further away from the observed process.

Achieving insight into shorter-term climatic processes through sam-
pling an archive is best done by increasing the resolution. Reducing d(i)
might require reducing D(i) by employing a measurement method that
consumes less material. However, the restriction imposed by diffusion
processes and climatic persistence still applies (Eq. 1.4). “Overlapped
sampling,” d(i) < D(i), is no means to obtain higher resolved informa-
tion than with d(i) ≥ D(i).

1.5 Aim and structure of this book
We have certain hypotheses about time-dependent climate processes,

about Xtrend(T ), Xout(T ), S(T ) and Xnoise(T ), which we would like to
test. Alternatively, we wish to estimate parameters of climate processes.
For that purpose, we use certain methods that take uncertainty into
account, that means, statistical methods. Smaller error bars or nar-
rower confidence intervals for the results obtained with the methods,
guarantee better testability or more accurate knowledge. To construct
confidence intervals, in principle, two approaches exist: classical and
bootstrap. The classical approach makes substantial assumptions, such
as normally distributed data, no serial dependence, and, often, even time
spacing, whereas the bootstrap approach does not make such. Since the
preceding sections showed that the assumptions made by the classical
approach may be violated when applied to climate time series analysis,
the bootstrap may yield more reliable results.

That does not imply that all results obtained on climate time se-
ries using classical methods are invalid. However, caution as regards
their statistical accuracy is appropriate. The reasons why the classi-
cal approach was used are obvious. First, the bootstrap was invented
late (Efron 1979), but it soon became accepted in the statistical com-
munity and recognized/accepted in the natural sciences (Casella 2003).
Bootstrap methods for time series (serially dependence) lag one decade
behind in their development. Second, there has been an increase in
computing power, which made bootstrap calculations feasible.

This book presents the bootstrap approach adapted to a number of
statistical analysis methods that have been found useful for analysing
climate time series at least by the author. Linear and nonlinear regres-
sion (Chapter 4), spectral analysis (Chapter 5) and extreme value time
series analysis (Chapter 6) are explained in case of univariate climate
time series analysis (Part II). Correlation (Chapter 7) as well as lagged
and other variants of regression (Chapter 8) come from the field of bivari-
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ate time series (Part III). Application of each method is illustrated with
one or more climate time series, several of which already presented. A
section (“Background material”) reports alternative techniques and pro-
vides a look at the literature that is intended to serve climatologists who
wish to learn about the statistical basics of the method, as well as statis-
ticians who wish to learn about the relevant climatology encountered.
While both lists cannot be exhaustive, this is more the aim for the also
given literature where the bootstrap approach to a statistical method
has been used in climatology and related fields as, for example, ecol-
ogy. A further section (“Technical issues”) informs about details such as
numerical accuracy and software implementations, it gives also internet
references where the computer programs implementing the method can
be obtained.

Some topics are not covered in this book. Extension to tri- and higher
dimensional multivariate time series seems to be straightforward. Meth-
ods from dynamical systems theory, attempting to describe climate as
a low-dimensional chaotic system, are likely too demanding in terms of
data size (Section 1.6). Also other methods that require even spacing
are not dealt with but briefly reviewed in Section 1.6.

However, before starting with adaptions of the bootstrap approach to
statistical methods in climatology we need to review bootstrap method-
ology for time series in some detail, which is done in Chapter 3. Neces-
sary statistical concepts such as confidence intervals or standard errors
are also explained. One bootstrap variant (“parametric bootstrap”) em-
ployed in this book assumes a statistical model of the climatological
persistence (Chapter 2). These chapters complete Part I.

Sceptics among the readers may ask whether or not the bootstrap
approach brings indeed more reliable results than the classical approach.
Therefore you will find throughout the book comparisons between both
approaches. These are based on Monte Carlo simulations, that means,
artificial time series with pre-defined attributes, for which the true result
is known a priori. In the same way, different bootstrap variants are also
compared with each other. Finally, the (adverse) effects of interpolation
are also explored by means of Monte Carlo simulations.

The final part (IV) of the book is an outlook on future directions in
climate time series analysis with the bootstrap. Chapter 9 outlines cli-
mate archive modelling to take into account timescale uncertainties and
includes “normal” extensions to novel estimation problems and higher
dimensions. We also look on paradigm changes that may result from a
strong increase in computing power in the future and influence the way
how we model the climate and analyse climate time series.
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1.6 Background material
The prologue is a translation from Popper (1935: p. 78 therein).

Other relevant books on quantification and philosophy of science are
predominantly written by physicists: Einstein (1949), Heisenberg (1969),
Lakatos and Musgrave (1970), von Weizsäcker (1985) and Sokal and
Bricmont (1998).

As statistics texts, accessible to non-statisticians, describing the
various roads to probability and estimation, may serve Priestley (1981:
Chapters 1–3 therein), Fine (1983), Davison (2003) and Wasserman
(2004). The Bayesian road (Lindley 1965; Spall 1988; Bernardo and
Smith 1994; Bernardo et al. 2003) seems not to be so well followed in
geosciences, but this may change in future. Davis (1986) is a text book
written by a geologist; Wilks (2006) and von Storch and Zwiers (1999)
were written by climatologists. The latter three contain parts on time
series analysis. As text books on time series analysis, accessible to non-
statisticians, the following can be used: Priestley (1981), Diggle (1990),
Brockwell and Davis (1996) and Shumway and Stoffer (2006); the latter
work includes software examples in the R computing environment. A
further book on time series analysis is by Anderson (1971). The only
book devoted to time series analysis of unevenly spaced data seems to be
Parzen (1984); an early review is by Marquardt and Acuff (1982); there
is a thesis (Martin 1998) from the field of signal processing. We finally
mention the Encyclopedia of statistical sciences (Kotz et al. 1982a,b,
1983a,b, 1985a,b, 1986, 1988a,b, 1989, 1997, 1998, 1999).

Climatology text books: The reports by Working Group I of the
Intergovernmental Panel on Climate Change (IPCC–WG I) (Houghton
et al. 2001; Solomon et al. 2007) are useful on weather (that is, meteo-
rology) and short-term climate. Paleoclimate, covering longer-term pro-
cesses in, say, the Holocene (last ∼ 10,000 years) and before, is described
by Crowley and North (1991), Bradley (1999) and Cronin (2010). We
finally mention the Encyclopedia of Atmospheric Sciences (Holton et al.
2003), the Encyclopedia of Earth System Science (Nierenberg 1992), the
Encyclopedia of Geology (Selley et al. 2005), the Glossary of Geology
(Neuendorf et al. 2005), the Handbook of Hydrology (Maidment 1993)
and the Encyclopedia of Ocean Sciences (Steele et al. 2001).

The form of decomposition in Eq. (1.1) of a process into trend, out-
liers, variability and noise is non-standard. Outliers are often considered
as gross errors in the data that only have to be removed. However, in
climatology, outliers may bear information on extreme events and can
also be the object of analysis (Chapter 6). The notion of systematic
behaviour of a trend leaves space for interpretation of what can be in-
cluded. Certainly worth so are nonlinear trends to account for climatic
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changes (Chapter 4). Also incorporated are harmonic signals like the
daily or annual cycle, which can be recorded in climate archives. Since
the focus here in this book is on longer-term processes, we omit to write
an own seasonal signal into Eq. (1.1); such an approach is common in
econometrics (Box et al. 1994). Other, longer-term cyclic influences on
climate are also astronomical in origin, such as variations in solar ac-
tivity or Milankovitch variations in Earth orbital parameters. However,
since their imprint in the climate system as regards amplitude, phase and
frequency, is not precisely known (and also sometimes debated), these
signals are investigated in this book by analysing the spectral properties
of the noise process (Chapter 5).

Detailed accounts of climate archives give the following. Usage
of marine sediment cores is a standard method (has been applied over
decades), see Kennett (1982), Seibold and Berger (1993) and the series of
reports on and results of scientific drilling into the ocean floor (Deep Sea
Drilling Project 1969–1986; Ocean Drilling Program 1986–2004, 1988–
2007). Ice cores (Oeschger and Langway 1989; Hammer et al. 1997) and
lake sediment cores (Negendank and Zolitschka 1993; Zolitschka 1999)
are likewise regularly employed. Usefulness of speleothems (Baker et al.
1993; Gillieson 1996; Daoxian and Cheng 2002; Fairchild et al. 2007)
is recognized since the 1990s. Dendroclimatology has a long tradition
(Douglass 1919, 1928, 1936; Schweingruber 1988). Analysis of documen-
tary climate data is described by Pfister (1999), Brázdil et al. (2005)
and Glaser (2001). Construction and use of climate models is a grow-
ing field, see McGuffie and Henderson-Sellers (1997) or Randall et al.
(2007). From this book’s data analysis view, climate modelling is simi-
lar to probing and measuring a natural climate archive.

An upper limit to the time range over which climate can be studied is
set by the age of Earth (∼ 4.6 Ga). The course of the evolution of Earth,
including its climate, division and subdivision into different geological
epochs, is described by Stanley (1989). A geological timescale refers to
a chronology of events (first or last appearance of species, reversals of
Earth’s magnetic field, climatic, etc.) which is updated as new data
and new datings become available. Currently used are: Gradstein et al.
(2004) covering the whole time range, Cande and Kent (1992, 1995)
going back before the Cenozoic (last ∼ 65 Ma) into the late Cretaceous,
Berggren et al. (1995b) for the Cenozoic and Berggren et al. (1995a) for
the last 6 Ma. (Note the various meanings of “timescale” in geosciences.)

Absolute dating methods almost entirely use one of the many
clocks provided by natural radioactive elements. A comprehensive trea-
tise is Geyh and Schleicher (1990), see also Walker (2005). K/Ar dating
(Dalrymple and Lanphere 1969) utilizes the decay of 40K. The potas-
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sium isotope has a half-life, T1/2, of 1.266 Ga (Section 8.7), it decays
into 40Ar with a chance of ∼ 11% and 40Ca (∼ 89%). One measures 40K
and also the amount of 40Ar that accumulated in a sample since argon
was removed by a process whose age is to be determined. Such a zeroing
process can be a volcanic eruption, which produced the rock sample.
The natural decay chains in uranium and thorium provide a wealth of
clocks, running on a wide range of timescales (Ivanovich and Harmon
1992). U/Th dating utilizes the decays of 234U to 230Th (T1/2 ≈ 245 ka)
and 230Th to 226Ra (T1/2 ≈ 76 ka). Since speleothems contain essen-
tially no thorium at the time of formation, dating means measuring the
amount of accumulated thorium since that time. 210Pb dating (Appleby
and Oldfield 1992) takes the decay chain of 210Pb (T1/2 ≈ 22.3 a) to
206Pb. Radiocarbon dating (Taylor 1987) employs the decay of 14C to
14N (T1/2 ≈ 5730 a). T1/2 determines the limits for a reliable age deter-
mination. For ages below, say, ∼ 0.1 · T1/2 and above ∼ 10 · T1/2, the
uncertainties introduced at the determination of the amounts of parent
or daughter products become likely too large. Using modern mass spec-
trometers, this range can be somewhat widened. Besides measurement
uncertainties and those owing to imperfectly known half-lifes, another
error source is bias that occurs when assumptions, such as complete ze-
roing or absent sample contamination, are violated. In fact, eliminating
measurement bias is often the major task in absolute dating. Using an
archive as a dosimeter for dating (Table 1.1) means to measure the dose
(effect) a sample has received over time exposed to a dose-rate (effect per
time interval). One example is electron-spin-resonance dating, where the
effect consists in the number of trapped electrons (for example in car-
bonate material in a sediment core) and the dose-rate is from natural ra-
dioactivity (Grün 1989); the other is cosmic-ray-exposure dating, where
one of the effects used regards the number of 10Be atoms transported to
an archive from the atmosphere, where cosmic rays had produced them
(Gosse and Phillips 2001). Another absolute dating method is count-
ing of yearly layers, either of tree-rings or growth layers in a stalagmite
(Fig. 1.14). The assumption that layers present a constant time interval
is crucial. Documentary data contain together with the variable usually
also the date (which is susceptible to reporting errors).

Relative dating methods rely on an assumed relation between the
measured series in the depth domain, {z(i), x(i)}nX

i=1, and another, dated
time series, {tY (j), y(j)}nY

j=1. If the relation between X and Y is simple
(linear, no lag), tY (j) can be projected onto tX(i) rather easily. If it is
more complex, a mathematical model may have to be used. Climatol-
ogists denote that procedure as correlation or “tuning.” As illustration
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we note that besides the GT4 timescale for the Vostok ice core (Fig.
1.3), two tuned timescales exist. One uses as x(i) Vostok δ18O in air
bubbles and as y(i) the precession of Earth’s orbit (Shackleton 2000);
the other uses as x(i) Vostok methane content in air and as y(i) mid-
July insolation at 30◦N (Ruddiman and Raymo 2003). One critical point
with relative dating is how well the assumed relation holds. Bayesian
approaches to timescale construction were developed by Agrinier et al.
(1999) for a geomagnetic polarity record from the Cretaceous–Cenozoic
and by Blaauw and Christen (2005) for a Holocene archive in form of
a peat-bog core. Section 4.4 gives more details and references on the
approaches.

Most before mentioned textbooks on climate and climate archives con-
tain also information on proxy variables and how well those indicate
climate. Other sources are Broecker and Peng (1982) and Henderson
(2002). δ18O in shells of marine living foraminifera (Fig. 1.2) was in the
beginning seen as a “paleothermometer” (Emiliani 1955) until Shackle-
ton (1967) showed that the major recorded climate variable is global ice
volume, although he partly withdraw later from this position (Shackleton
2000). The main idea is that polar ice is isotopically light (low δ18O) and
that during an interglacial (warm) more of that is as water in the ocean,
where foraminifera build their calcareous, δ18O-light shells. Stacks of ice
volume records, such as that from the “Spectral Analysis, Mapping, and
Prediction” (SPECMAP) project (Imbrie et al. 1984), going back nearly
800 ka, and that of Shackleton et al. (1995b), extending into the Miocene
(before ∼ 5.2 Ma), were produced and a nomenclature (Prell et al. 1986)
of marine isotope stages (MISs) erected. A recently constructed Plio- to
Pleistocene δ18O stack is by Lisiecki and Raymo (2005). Atmospheric
CO2 is rather accurately reflected by CO2 in air bubbles from Antarctic
ice cores (Fig. 1.3), mainly because CO2 mixes well in the atmosphere
(Raynaud et al. 1993). The currently longest record comes from the
European Project for Ice Coring in Antarctica (EPICA), Dome C site,
the core covering the past ∼ 800 ka (Section 8.6.1). For earlier times,
other proxies for atmospheric CO2 have to be used, such as the size
and spatial density of stomata in fossil leaves (Kürschner et al. 1996),
resulting in significantly larger proxy errors. δD variations in polar ice
(Fig. 1.3) reflect variations in air temperature as this variable deter-
mines how enriched the precipitation becomes during its net transport
from the mid-latitudes to the poles (Rayleigh destillation) (Dansgaard
and Oeschger 1989). As regards the various proxy variables from the
NGRIP ice core (Figs. 1.4 and 1.5), see the captions and references
given therein. Radiocarbon (Fig. 1.6) is produced in the upper atmo-
sphere via reactions with cosmogenic neutrons; the cosmic-ray flux is
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modulated by the Sun’s activity through the solar wind. Another influ-
ence that can be seen using ∆14C is variations in the exchange between
the oceanic carbon storage and the atmosphere, see Beer et al. (1994)
and Cini Castagnoli and Provenzale (1997). Pollen records and their
proxy quality are explained by Moore et al. (1991) and Traverse (2007).
The proxy quality of δ18O in speleothems from the Arabian peninsula
as indicator of monsoon rainfall is largely based on Rayleigh destillation
processes (Fleitmann et al. 2004, 2007a).

Ergodicity. Detrended and normalized x(i) were used for analysing
the distributional shape for the process Xnoise(T ) (Fig. 1.11). That is,
instead of an ensemble of different realizations at a particular time, one
realization was taken at different times. A process for which this re-
placement gives same results is called ergodic. Since in climatological
practice no repeated experiment can be carried out, except with climate
models, ergodicity has to be added to the set of made assumptions in
this book.

Density estimation. The histograms in Fig. 1.11 were constructed
using a bin width equal to 3.49 sn−1 n−1/3 (Scott 1979), where sn−1 is
the sample standard deviation. More elaborated approaches to den-
sity estimations use kernel functions (Silverman 1986; Simonoff 1996;
Wasserman 2006). Applications of density estimation to climatology
have been made occasional. They include analyses of the Pleistocene
ice age (Matteucci 1990; Mudelsee and Stattegger 1997) and of the re-
cent planetary-scale atmospheric circulation (Hansen and Sutera 1986).
Standard references on statistical properties of distributions are Johnson
et al. (1994, 1995) on continuous univariate and Kotz et al. (2000) on
continuous multivariate distributions. Random variables that are com-
posed of products or ratios of other random variables have since long
successfully defied analytical derivation of their PDF. Only very simple
forms, like Z = X2 + Y 2 with Gaussian X and Y , which has a chi-
squared density (right-skewed), can be solved. See Haldane (1942) or
Lomnicki (1967) for other cases.

Bioturbation in deep-sea sediments acts as a low-pass filter (Eq. 1.4)
(Goreau 1980; Dalfes et al. 1984; Pestiaux and Berger 1984). However,
since the accumulated sediment passes the bioturbation zone (the up-
per few tens of cm of sediment) unidirectionally, signal processing tech-
niques, termed “deconvolution,” have been successfully developed to use
that information to improve the construction of the timescale (Schiffel-
bein 1984, 1985; Trauth 1998). An example demonstrating what effects
have to anticipated when sampling natural climate archives such as sedi-
ment cores is given by Thomson et al. (1995), who found offsets of ∼ 1.1
ka between ages of large (> 150 µm diameter) foraminifera and fine bulk
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carbonate at same depth in a core. The most likely explanation is a
size-dependent bioturbation that preferentially transports fine material
downwards because that is cheaper in terms of energy.

Inhomogeneities in time series owing to systematic changes in the
observation system (i.e., the archive) may arise in manifold ways. It is
evidently of importance to detect and correct for these effects. A simple
case is a sudden change, such as when the time at which daily tem-
perature is recorded, is shifted. This type can be detected using meth-
ods (Basseville and Nikiforov 1993) that search for an abrupt change in
the mean, Xtrend(T ). Inhomogeneities in the form of gradual changes
in mean, or variability, may be analysed using regression techniques
(Chapter 4). Quality assessment of climate data deals predominantly
with types and sizes of inhomogeneities (Peterson et al. 1998a,b). Inho-
mogeneities in the form of periodic changes of the observation system
can influence the estimated spectral properties (Chapter 5).

Physics’ nonlinear dynamical systems theory has developed time
series analysis techniques (Abarbanel et al. 1993; Kantz and Schreiber
1997; Diks 1999; Chan and Tong 2001; Tsonis and Elsner 2007; Donner
and Barbosa 2008) that can be applied to study, for example, the ques-
tion whether the climatic variability sampled by {t(i), x(i)}n

i=1 is the
product of low-dimensional chaos. A positive answer would have serious
consequences for the construction of climate models because only a hand-
ful of independent climate variables had to be incorporated; and also the
degree of climate predictability would be precisely known (Lyapunov ex-
ponents). Although it was meteorology that boosted development of dy-
namical systems theory by constructing a simplified atmosphere model
(Lorenz 1963), we will not pursue related time series analysis methods
for two reasons. First, for most applications in climatology the data
sizes are not sufficient to allow reasonably accurate conclusions. For
example, Nicolis and Nicolis (1984) analysed one late Pleistocene (last
∼ 900 ka) δ18O time series (cf. Fig. 1.2) and found a “climatic attractor”
with dimensionality ∼ 3.1, meaning that four variables could explain
the ice age. Grassberger (1986), and later Ruelle (1990), convincingly
refuted that claim, which was based on a data size of a few hundred in-
stead of several thousand necessary (Eckmann and Ruelle 1992). Later,
Mudelsee and Stattegger (1994) analysed the longest Plio-/Pleistocene
δ18O records then available. They found no low-dimensional attractor
and could only conclude that at least five variables are acting. Since one
assumption for such analyses is that the proxy quality of the measured
variable (δ18O, indicating ice volume) holds over all timescales sampled,
the limits owing to the sampling process (Eq. 1.4) and the proxy quality
(Table 1.2) effectively prohibit exploration of low-dimensional climatic
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chaos—not to mention the amount of measurements required. Lorenz
(1991) considered that decoupled climatic subsystems with low dimen-
sionality could be found. Second, nonlinear dynamical systems methods
reconstruct the physical phase space by the method of delay-time coor-
dinates (Packard et al. 1980). Instead of using multivariate time series
{t(i), x(i), y(i), z(i), . . .}n

i=1 (forming the data matrix), this method takes
{t(i), x(i), x(i + L), x(i + 2L), . . .}n′

i=1, with n′ < n and L (integer) ap-
propriately selected. The delay-time method requires equidistance. For
many climate time series encountered in practice, this would mean in-
terpolation, which this book does not advocate (Section 1.4).

Even time spacing is also required for current implementations of
two other analysis techniques. The first, Singular Spectrum Analysis or
SSA (Broomhead and King 1986), also uses delay-time coordinates ex-
plained in the preceding paragraph to reconstruct the data matrix from
one univariate time series. The eigenvectors associated with the largest
eigenvalues yield the SSA decomposition of the time series into trend
and other more variable portions. There exists a successful approach
based on computer simulations to assess the significance of eigenval-
ues in the presence of persistence, which has been applied to observed
equidistant temperature time series (Allen and Smith 1994). Again, be-
cause for many real-world paleoclimatic time series interpolation would
have to be performed, we do not include SSA here. Note that similar
to SSA is Principal Component Analysis (PCA), also termed Empiri-
cal Orthogonal Function (EOF) analysis, which does the same as SSA
on multivariate time series. PCA is a standard method to search for
patterns in high-dimensional meteorological time series such as pressure
and temperature fields (Preisendorfer 1988; von Storch and Zwiers 1999).
The second time series analysis method that requires even spacing and is
often applied in climatology, is wavelet analysis, which composes a time
series using “wave packets,” localized in time and frequency. Percival
and Walden (2000) is a textbook accessible to non-statisticians. Appli-
cations to climatology include Fligge et al. (1999), who analyse sunspot
time series (Fig. 2.12), and Torrence and Compo (1998), who analyse
time series of the El Niño–Southern Oscillation (ENSO) climatic mode.
(El Niño is defined by sea-surface temperature anomalies in the eastern
tropical Pacific, while the Southern Oscillation Index is a measure of the
atmospheric circulation response in the Pacific–Indian Ocean region.) It
might well be possible to develop adaptions of phase-space reconstruc-
tion and nonlinear dynamical systems analysis, SSA, PCA and wavelet
analysis to explore unevenly spaced time series directly, circumventing
adverse effects of interpolation—at the moment, such adaptions seem
not to be available (but see Section 5.3 as regards wavelets).
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Chapter 2

Persistence Models

Climatic noise often exhibits persistence (Section 1.3). Chapter 3
presents bootstrap methods as resampling techniques aimed at provid-
ing realistic confidence intervals or error bars for the various estimation
problems treated in the subsequent chapters. The bootstrap works with
artificially produced (by means of a random number generator) resam-
ples of the noise process. Accurate bootstrap results need therefore the
resamples to preserve the persistence of Xnoise(i). To achieve this re-
quires a model of the noise process or a quantification of the size of the
dependence. Model fits to the noise data inform about the “memory”
of the climate fluctuations, the span of the persistence. The fitted mod-
els and their estimated parameters can then be directly used for the
bootstrap resampling procedure.

It turns out that for climate time series with discrete times and uneven
spacing, the class of persistence models with a unique correspondence to
continuous-time models is rather limited. This “embedding” is necessary
because it guarantees that our persistence description has a foundation
on physics. The first-order autoregressive or AR(1) process has this
desirable property.

2.1 First-order autoregressive model

The AR(1) process is a simple persistence model, where a realization
of the noise process, Xnoise(i), depends on just the value at one time step
earlier, Xnoise(i− 1). We analyse even and uneven spacing separately.
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34 2 Persistence Models

2.1.1 Even spacing
In Eq. (1.2) we let the time increase with constant spacing d(i) = d >

0 and write the discrete-time Gaussian AR(1) noise model,

Xnoise(1) = EN(0, 1)(1),

Xnoise(i) = a ·Xnoise(i− 1) + EN(0, 1−a2)(i), i = 2, . . . , n.
(2.1)

Herein, −1 < a < 1 is a constant and EN(µ, σ2)(·) is a Gaussian random
process with mean µ, variance σ2 and no serial dependence, that means,
E

[
EN(µ, σ2)(i) · EN(µ, σ2)(j)

]
= 0 for i 6= j. It readily follows that Xnoise(i)

has zero mean and unity variance, as assumed in our decomposition (Eq.
1.2). Figure 2.1 shows a realization of an AR(1) process.

0 50 100 150 200
i

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0x(i)

Figure 2.1. Realization of an AR(1) process (Eq. 2.1); n = 200 and a = 0.7.

The autocorrelation function,

ρ(h) =
E

[{
Xnoise(i + h)−E

[
Xnoise(i + h)

]}
·
{
Xnoise(i)−E

[
Xnoise(i)

]}]
{

VAR
[
Xnoise(i + h)

]
· VAR

[
Xnoise(i)

]}1/2

= E
[
Xnoise(i + h) ·Xnoise(i)

]
,

(2.2)

where h is the time lag, E is the expectation operator and VAR is the
variance operator, is given by (Priestley 1981: Section 3.5 therein)

ρ(h) = a|h|, h = 0,±1,±2, . . . . (2.3)

For a > 0, this behaviour may be referred to as “exponentially decreasing
memory” (Fig. 2.2).
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Figure 2.2. Autocorrelation function of the AR(1) process, a > 0. In the case of even
spacing (Section 2.1.1) ρ(h) is given by a|h| = exp [−|h| · d/τ ], in the case of uneven
spacing (Section 2.1.2) by exp [−|T (i + h)− T (i)|/τ ]. In both cases, the decrease is
exponential with decay constant τ .

Note that the assumptions in Eq. (1.2), namely E [Xnoise(i)] = 0 and
VAR [Xnoise(i)] = 1, required the formulation of the AR(1) model as
in Eq. (2.1), which is non-standard. See Section 2.6 for the standard
formulation.

Persistence estimation for the AR(1) model means estimation of the
autocorrelation parameter, a. To illustrate autocorrelation estimation,
assume that from the time series data, {x(i)}n

i=1, the outliers have been
removed and the trend and variability properties (Eq. 1.2) determined
and used (as in Fig. 1.11) to extract {xnoise(i)}n

i=1, realizations of the
noise process. An estimator of the autocorrelation parameter, that
means, a recipe how to calculate a from {xnoise(i)}n

i=1, is given by

â =
n∑

i=2

xnoise(i) · xnoise(i− 1)

/
n∑

i=2

xnoise(i)2. (2.4)

(Chapter 3 introduces estimators and the “hat notation.”) Note that
estimator â is biased, that means, if {Xnoise(i)} is an AR(1) process with
parameter a, then E (â) 6= a. Only approximation formulas exist for the
bias in general autocorrelation estimation. Such formulas can be used
for bias correction. Similarly, also the estimation variance, VAR (â), is
only approximately known. In general, bias and variance decrease with
n. The background material (Section 2.6) gives various bias and variance
formulas, informs about bias correction and lists other autocorrelation
estimators.
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Chapter 3

Bootstrap Confidence Intervals

In statistical analysis of climate time series, our aim (Chapter 1) is to
estimate parameters of Xtrend(T ), Xout(T ), S(T ) and Xnoise(T ). Denote
in general such a parameter as θ. An estimator, θ̂, is a recipe how to
calculate θ from a set of data. The data, discretely sampled time series
{t(i), x(i)}n

i=1, are influenced by measurement and proxy errors of x(i),
outliers, dating errors of t(i) and climatic noise. Therefore, θ̂ cannot
be expected to equal θ. The accuracy of θ̂, how close it comes to θ, is
described by statistical terms such as standard error, bias, mean squared
error and confidence interval (CI). These are introduced in Section 3.1.

With the exploration of new archives or innovations in proxy, mea-
surement and dating techniques, new θ̂ values, denoted as estimates,
become available and eventually join or replace previous estimates. A
telling example from geochronology is where θ is the time before present
when the Earth’s magnetic field changed from reversed polarity dur-
ing the Matuyama epoch to normal polarity during the Brunhes epoch,
at the beginning of the late Pleistocene. Estimates published over the
past decades include 690 ka (Cox 1969) and 730 ka (Mankinen and Dal-
rymple 1979), both based on K/Ar dating; and 790 ka (Johnson 1982)
and 780 ka (Shackleton et al. 1990), both based on astronomical tun-
ing. The currently accepted value is 779 ka with a standard error of 2
ka (Singer and Pringle 1996), written as 779± 2 ka, based on 40Ar/39Ar
dating (a high-precision variant of K/Ar dating). An example with a
much greater uncertainty regards the case where θ is the radiative forc-
ing (change in net vertical irradiance at the tropopause) of changes in
atmospheric concentrations of mineral dust, where even the sign of θ is
uncertain (Penner et al. 2001; Forster et al. 2007). It is evident that the
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66 3 Bootstrap Confidence Intervals

growth of climatological knowledge depends critically on estimates of θ
that are accompanied by error bars or other measures of their accuracy.

Bootstrap resampling (Sections 3.2 and 3.3) is an approach to con-
struct error bars and CIs. The idea is to draw random resamples from
the data and calculate error bars and CIs from repeated estimations on
the resamples. For climate time series, the bootstrap is potentially supe-
rior to the classical approach, which relies partly on unrealistic assump-
tions regarding distributional shape, persistence and spacing (Chap-
ter 1). However, the bootstrap, developed originally for data without
serial dependence, has to be adapted before applying it to time series.
Two classes of adaptions exist for taking persistence into account. First,
nonparametric bootstrap methods resample sequences, or blocks, of the
data. They preserve the dependence structure over the length of a block.
Second, the parametric bootstrap adopts a dependence model. As such,
the AR(1) model (Chapter 2) is our favorite.

It turns out that both bootstrap resampling types have the potential
to yield acceptably accurate CIs for estimated climate parameters. A
problem for the block bootstrap arises from uneven time spacing. An-
other difficult point is to find optimal block lengths. This could make the
parametric bootstrap superior within the context of this book, especially
for small data sizes (less than, say, 50). The block bootstrap, however,
is important when the deviations from AR(1) persistence seem to be
strong. Various CI types are investigated. We prefer a version (so-called
BCa interval) that automatically corrects for estimation bias and scale
effects. Computing-intensive calibration techniques can further increase
the accuracy.

3.1 Error bars and confidence intervals
Let θ be the parameter of interest of the climatic process {X(T )} and

θ̂ be the estimator. Extension to a set of parameters is straightforward.
Any meaningful construction lets the estimator be a function of the
process, θ̂ = g ({X(T )}). That means, θ̂ is a random variable with
statistical properties. The standard deviation of θ̂, denoted as standard
error, is

se
θ̂

=
[
VAR

(
θ̂
)]1/2

. (3.1)

The bias of θ̂ is
bias

θ̂
= E

(
θ̂
)
− θ. (3.2)

bias
θ̂

> 0 (bias
θ̂

< 0) means a systematic overestimation (underesti-
mation). se

θ̂
and bias

θ̂
are illustrated in Fig. 3.1. Desirable estimators

have small se
θ̂

and small bias
θ̂
. In many estimations, a trade-off problem
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Figure 3.1. Standard error (seθ̂), bias (biasθ̂) and equi-tailed confidence interval

(CIθ̂,1−2α = [θ̂l; θ̂u]) for a Gaussian distributed estimator, θ̂. The true parameter
value is θ; the confidence level is 1− 2α = 90%.

between se
θ̂

and bias
θ̂

occurs. A convenient measure is the root mean
squared error,

RMSE
θ̂

=
{

E

[(
θ̂ − θ

)2
]}1/2

=
(
se

θ̂
2 + bias

θ̂
2
)1/2

.

(3.3)

The coefficient of variation is

CV
θ̂

= se
θ̂

/∣∣∣E (
θ̂
)∣∣∣ . (3.4)

While θ̂ is a best guess of θ or a point estimate, a CI is an interval
estimate that informs how good a guess is (Fig. 3.1). The CI for θ is

CI
θ̂,1−2α

=
[
θ̂l; θ̂u

]
, (3.5)

where 0 ≤ 1 − 2α ≤ 1 is a prescribed value, denoted as confidence
level. The practical examples in his book consider 90% (α = 0.05) or
95% (α = 0.025) CIs, which are reasonable choices for climatological
problems. θ̂l is the lower, θ̂u the upper endpoint of the CI. θ̂l and θ̂u are
random variables and have statistical properties such as standard error

Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer, Dordrecht. *** This is from 
2nd proofs (July 2010), final version: September 2010. *** ISBN: 978-90-481-9481-0; URL: http://www.manfredmudelsee.com/book; full 
content available from http://www.springer.com/environment/global+change+-+climate+change/book/978-90-481-9481-0
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or bias. The properties of interest for CIs are the coverages,

γl = prob
(
θ ≤ θ̂l

)
, (3.6)

γu = prob
(
θ ≥ θ̂u

)
(3.7)

and

γ = prob
(
θ̂l < θ < θ̂u

)
= 1− γl − γu. (3.8)

Exact CIs have coverages, γ, equal to the nominal value 1 − 2α. Con-
struction of exact CIs requires knowledge of the distribution of θ̂, which
can be achieved only for simple problems. In more complex situations,
only approximate CIs can be constructed (Section 3.1.3). As regards the
division of the nominal coverage between the CI endpoints, this book
adopts a practical approach and considers only equi-tailed CIs, where
nominally γl = γu = α. As a second CI property besides coverage, we
consider interval length, θ̂u − θ̂l, which is ideally small.

Preceding paragraphs considered estimators on the process level. In
practice, on the sample level, we plug in the data {t(i), x(i)}n

i=1 for
{T (i), X(i)}n

i=1. Following the usual convention, we denote also the
estimator on the sample level as θ̂. An example is the autocorrelation
estimator (Eq. 2.4).

3.1.1 Theoretical example: mean estimation of
Gaussian white noise

Let the process {X(i)}n
i=1 be given by

X(i) = EN(µ, σ2)(i), i = 1, . . . , n, (3.9)

which is called a Gaussian purely random process or Gaussian white
noise. There is no serial dependence, and the times T (i) are not of
interest. Consider as estimator θ̂ of the mean, µ, the sample mean,
written on process level as

µ̂ = X̄ =
n∑

i=1

X(i)/n. (3.10)

Let also σ be unknown and estimated by the sample standard deviation,
σ̂ = Sn−1, given in the next example (Eq. 3.19). The properties of X̄
readily follow as

seX̄ = σ · n−1/2, (3.11)
biasX̄ = 0, (3.12)

RMSEX̄ = seX̄ (3.13)
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and

CVX̄ = σ · n−1/2 · µ−1. (3.14)

An exact CI of level 1−2α can be constructed by means of the Student’s
t distribution of X̄ (von Storch and Zwiers 1999):

CIX̄,1−2α =
[
X̄ + tn−1(α) · Sn−1 · n−1/2; X̄ + tn−1(1− α) · Sn−1 · n−1/2

]
.

(3.15)
tν(β) is the percentage point at β of the t distribution function with ν
degrees of freedom (Section 3.9).

On the sample level, we write the estimated sample mean,

µ̂ = x̄ =
n∑

i=1

x(i)/n, (3.16)

the estimated standard error,

ŝex̄ =

{
n∑

i=1

[x(i)− x̄]2 /n2

}1/2

, (3.17)

and the confidence interval,

CIx̄,1−2α =
[
x̄ + tn−1(α) · sn−1 · n−1/2; x̄ + tn−1(1− α) · sn−1 · n−1/2

]
,

(3.18)
where sn−1 is given by Eq. (3.25).

The performance of the CI in Eq. (3.18) for Gaussian white noise is
analysed by means of a Monte Carlo simulation experiment. The CI
performs excellent in coverage (Table 3.1), as expected from its exact-
ness. The second CI property, length, decreases with data size. It can
be further compared with CI lengths for other location measures.

3.1.2 Theoretical example: standard deviation
estimation of Gaussian white noise

Consider the Gaussian white-noise process (Eq. 3.9) with unknown
mean, and as estimator of σ the sample standard deviation, written on
process level as

σ̂ = Sn−1 =

{
n∑

i=1

[
X(i)− X̄

]2
/(n− 1)

}1/2

. (3.19)
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Part II

Univariate Time Series
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Chapter 4

Regression I

Regression is a method to estimate the trend in the climate equation
(Eq. 1.1). Assume that outlier data do not exist or have already been
removed by the assistance of an extreme value analysis (Chapter 6).
Then the climate equation is a regression equation,

X(T ) = Xtrend(T ) + S(T ) ·Xnoise(T ). (4.1)

One choice is to write Xtrend(T ) as a function with parameters to be esti-
mated. A simple example is the linear function (Section 4.1), which has
two parameters, intercept and slope. A second example is the nonlinear
regression model (Section 4.2). The other choice is to estimate Xtrend(T )
nonparametrically, without reference to a specific model. Nonparametric
regression (Section 4.3) is also called smoothing.

Trend is a property of genuine interest in climatology, it describes
the mean state. This chapter deals also with quantifying S(T ), the
variability around the trend, as second property of climate. Regression
methods can be used to measure climate changes: their size and timing.
For that aim, the ramp regression (Section 4.2.1) constitutes a useful
parametric model of climate changes.

We compare the bootstrap with the classical approach to determine
error bars and CIs for estimated regression parameters. The difficulties
imposed by the data are non-Gaussian distributions, persistence and
uneven spacing. We meet another difficulty, uncertain timescales. This
leads to adaptions of the bootstrap (Section 4.1.7), where the resampling
procedure is extended to include also the time values, t(i).

The present chapter studies regression as a tool for quantifying the
time-dependence of Xtrend(T ), the relation between trend and time in
univariate time series. A later chapter (Regression II) uses regression to
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114 4 Regression I

analyse the relation in bivariate time series, between one time-dependent
climate variable, X(T ), and another, Y (T ).

4.1 Linear regression
The linear regression uses a straight-line model,

Xtrend(T ) = β0 + β1T. (4.2)

The climate equation without outlier component is then written in dis-
crete time as a linear regression equation,

X(i) = β0 + β1T (i) + S(i) ·Xnoise(i). (4.3)

T is called the predictor or regressor variable, X the response variable,
β0 and β1 the regression parameters.

4.1.1 Weighted least-squares and ordinary
least-squares estimation

In a simple, theoretical setting, where the variability S(i) is known
and Xnoise(i) has no serial dependence, the linear regression model can be
fitted to data {t(i), x(i)}n

i=1 by minimizing the weighted sum of squares,

SSQW (β0, β1) =
n∑

i=1

[x(i)− β0 − β1t(i)]
2 /

S(i)2 , (4.4)

yielding the weighted least-squares (WLS) estimators

β̂0 =

[
n∑

i=1

x(i)/S(i)2 − β̂1

n∑
i=1

t(i)/S(i)2
] /

W, (4.5)

β̂1 =

{[
n∑

i=1

t(i)/S(i)2
] [

n∑
i=1

x(i)/S(i)2
] /

W −
n∑

i=1

t(i) x(i)/S(i)2
}

×


[

n∑
i=1

t(i)/S(i)2
]2 /

W −
n∑

i=1

t(i)2/S(i)2


−1

, (4.6)

where

W =
n∑

i=1

1/S(i)2. (4.7)
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4.1 Linear regression 115

In a practical setting, S(i) is often not known and has to be replaced
by Ŝ(i). If prior knowledge indicates that S(i) is constant, then one
may take as estimator the square root of the residual mean square MSE

(Montgomery and Peck 1992),

Ŝ(i) = Ŝ =

{
n∑

i=1

[
x(i)− β̂0 − β̂1t(i)

]2 /
(n− 2)

}1/2

= MS
1/2
E . (4.8)

If S(i) is unknown and possibly time-dependent, the following itera-
tive estimation algorithm can be applied (Algorithm 4.1). As long as
S(i) is required only for weighting, this produces the correct estimators
also if only the relative changes of S(i), instead of the absolute val-
ues, are estimated. Analogously, if S(i) is required only for weighting
and known to be constant, then Eqs. (4.5) and (4.6) can be used with
S(i) = 1, i = 1, . . . , n and W = n. This estimation without weighting
is called ordinary least squares (OLS). For the construction of classical
CIs (Section 4.1.4), however, an estimate of S(i) has to be available.

Step 1 Make an initial guess, Ŝ(0)(i), of the variability.

Step 2 Estimate the regression parameters, β̂
(0)
0 and β̂

(0)
1 , with the guessed

variability used instead of S(i) in Eqs. (4.5), (4.6) and (4.7).

Step 3 Calculate e(i) = x(i)− β̂0 − β̂1t(i), i = 1, . . . , n. The e(i) are called the
unweighted regression residuals.

Step 4 Obtain a new variability estimate, Ŝ(1)(i) from the residuals. This can
be done either nonparametrically by smoothing (e.g., running standard
deviation of e(i)) or fitting a parametric model of S(i) to e(i).

Step 5 Go to Step 2 with the new, improved variability estimate until regres-
sion estimates converge.

Algorithm 4.1. Linear weighted least-squares regression, unknown variability.

4.1.1.1 Example: Arctic river runoff
The climate model run with natural forcing only (Fig. 4.1a) does not

exhibit a slope significantly different from zero. (See Section 4.1.4 for
the determination of regression standard errors.) The run with com-
bined anthropogenic and natural forcing (Fig. 4.1b) displays significant
upwards trends in runoff. Wu et al. (2005) conjecture that there might
be a change-point at around 1965, when the slope changed.
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Figure 4.1. Linear regression models fitted to modelled Arctic river runoff (Fig. 1.9).
a Natural forcing only; b combined anthropogenic and natural forcing. Following
Wu et al. (2005), the fits (solid lines) were obtained by OLS regression using the
data from (a) the whole interval 1900–1996 and (b) from two intervals, 1936–2001
and 1965–2001. The estimated regression parameters (Eqs. 4.5 and 4.6) and their

standard errors (Eqs. 4.24 and 4.25) are as follows. a β̂0 = 3068 ± 694 km3a−1, β̂1 =

0.102 ± 0.356 km3a−2; b 1936–2001, β̂0 = −2210 ± 1375 km3a−1, β̂1 = 2.807 ± 0.698
km3a−2; b 1965–2001, β̂0 = −13,977 ± 3226 km3a−1, β̂1 = 8.734 ± 1.627 km3a−2.

4.1.2 Generalized least-squares estimation
In a practical climatological setting, Xnoise(i) often exhibits persis-

tence. This means more structure or information content than a purely
random process has. This knowledge can be used to apply the general-
ized least-squares (GLS) estimation, where the following sum of squares
is minimized:

SSQG(β) = (x−Tβ)′ V−1 (x−Tβ) . (4.9)

Herein,

β =
[
β0

β1

]
(parameter vector), (4.10)
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4.1 Linear regression 117

x =

x(1)
...

x(n)

 (data vector), (4.11)

T =

1 t(1)
...

...
1 t(n)

 (time matrix) (4.12)

and V is an n × n matrix, the covariance matrix. The solution is the
GLS estimator,

β̂ =
(
T′V−1T

)−1 T′V−1x. (4.13)

GLS has the advantage of providing smaller standard errors of regression
estimators than WLS in the presence of persistence. Analogously, in the
case of time-dependent S(i), the WLS estimation is preferable (Sen and
Srivastava 1990) to OLS estimation. The covariance matrix has the
elements

V (i1, i2) = S(i1) · S(i2) · E [Xnoise(i1) ·Xnoise(i2)] , (4.14)

i1, i2 = 1, . . . , n. Climatological practice normally requires to estimate
besides the variability also the persistence (Chapter 2) to obtain the V
matrix. In the case of the AR(1) persistence model for uneven spacing
(Eq. 2.9), the only unknown besides S(i) required for calculating V is
the persistence time, τ . The estimated V matrix has then the elements

V̂ (i1, i2) = Ŝ(i1) · Ŝ(i2) · exp
[
−|t(i1)− t(i2)|/τ̂ ′

]
, (4.15)

i1, i2 = 1, . . . , n, where τ̂ ′ is the estimated, bias-corrected persistence
time (Section 2.6). For even spacing, replace the exponential expression
by (â′)|i1−i2|. (In the case of persistence models more complex than
AR(1), V is calculable and, hence, GLS applicable only for evenly spaced
time series.) The autocorrelation or persistence time estimation formulas
(Eqs. 2.4 and 2.11) are applied to the weighted WLS regression residuals,

r(i) =
[
x(i)− β̂0 − β̂1t(i)

]/
Ŝ(i), (4.16)

i = 1, . . . , n. Detrending by a linear regression is not the same as mean
subtraction, and the bias of those autocorrelation and persistence time
estimators need not follow the approximations given for mean subtrac-
tion (Section 2.6), but are unknown. However, the deviations are likely
negligible compared with the other uncertainties. Also in the case of un-
known persistence, an iterative procedure similar to that for WLS can
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118 4 Regression I

be applied, which is called estimated generalized least squares (EGLS)
(Sen and Srivastava 1990: Section 7.3 therein). Section 4.1.4.1 gives an
EGLS procedure for the case of AR(1) persistence.

4.1.3 Other estimation types
Least squares (OLS, WLS, GLS) is one type of fit criterion. An-

other is maximum likelihood (Section 2.6, p. 58). Further criteria result
from further preferences in the regression procedure. A notable choice
is robustness against the influence of outlier data, Xout(i). This can
be achieved by minimizing instead of the sum of squares (Eq. 4.4), the
median of squares,

m̂
{

[x(i)− β0 − β1t(i)]
2 /

S(i)2
}n

i=1
. (4.17)

Preferably (background material) is to minimize the trimmed sum of
squares,

SSQT (β0, β1) =
n−j∑

i=j+1

[
x′(i)− β0 − β1t

′(i)
] /

S′(i)2 , (4.18)

where j = INT (δn), INT (·) is the integer function, 0 < δ < 0.5, x′(i)
is size-sorted x(i), and t′(i) and S′(i) are the “slaves,” correspondingly
rearranged. Trimming excludes the 2j most extreme terms from con-
tributing to the estimation. Also by the minimization of the sum of
absolute deviations,

SSQA(β0, β1) =
n∑

i=1

|x(i)− β0 − β1t(i)| /S(i) , (4.19)

outlier values (if not already excluded by means of a prior analysis)
can be given less influence on regression estimates than in least-squares
minimization. Such criteria could also be preferable (in terms of, say,
standard errors of estimates) to least squares when instead of Xout(i) we
considered heavy-tailed or skewed Xnoise(i) distributions.

The various criteria introduced so far and the related minimization
techniques represent the computational aspect of the regression estima-
tion problem. The second and perhaps more relevant aspect is suitabil-
ity of the linear regression model. In climatology this means whether
a linear increase or decrease is not too simple for describing Xtrend(T ).
Model suitability can be evaluated graphically via various types of plots
of the regression residuals (Eq. 4.16). These realizations of the noise
process should nominally not exhibit more structure than the assumed
persistence model.
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Chapter 5

Spectral Analysis

Spectral analysis investigates the noise component in the climate equa-
tion (Eq. 1.2). A Fourier transformation into the frequency domain
makes it possible to separate short-term from long-term variations and
to distinguish between cyclical forcing mechanisms of the climate system
and broad-band resonances. Spectral analysis allows to learn about the
climate physics.

The task is to estimate the spectral density function, and to test
for harmonic (cyclical) signals. This poses more difficulties than, for
example, linear regression because now we estimate a function and not
just two parameters. Spectral smoothing becomes therefore necessary,
and this brings a trade-off between estimation variance and frequency
resolution.

The multitaper smoothing method achieves the optimal trade-off for
evenly spaced time series. The method of choice for unevenly spaced
records is Lomb–Scargle, which estimates in the time domain and avoids
distortions caused by interpolation.

Bootstrap resampling enhances multitaper and Lomb–Scargle meth-
ods by providing a bias correction and CIs. It supplies also a detec-
tion test for a spectral peak against realistic noise alternatives in form
of an AR(1) process (“red noise”). Section 5.2.8 introduces bootstrap
adaptions to take into account the effects of timescale uncertainties on
detectability and frequency resolution.

5.1 Spectrum
Let us assume in this chapter that the climate process in continuous

time, X(T ), has no trend and no outlier components and a constant
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178 5 Spectral Analysis

variability, S,

X(T ) = Xtrend(T ) + Xout(T ) + S(T ) ·Xnoise(T )
= S ·Xnoise(T ).

(5.1)

Such a process could be derived from a “real” climate process, that is,
with trend and so forth, by subtracting the trend and outlier components
and normalizing (standard deviation). Techniques for quantifying trend
and variability and detecting outliers are presented in Chapter 4.

It is then straightforward (Priestley 1981) to define a truncated pro-
cess,

XT ′(T ) =

{
X(T ) for −T ′ ≤ T ≤ T ′,

0 elsewhere,
(5.2)

and express it as a Fourier integral,

XT ′(T ) = (2π)1/2

∞∫
−∞

GT ′(f)e2πifT df, (5.3)

where

GT ′(f) = (2π)−1/2

∞∫
−∞

XT ′(T )e−2πifT dT

= (2π)−1/2

T ′∫
−T ′

X(T )e−2πifT dT. (5.4)

This introduces the frequency, f . (The symbol i in the exponent denotes√
−1.) This is a useful quantity for describing phenomena that exhibit a

periodic behaviour in time. The period (time units) is given by Tperiod =
1/f . If one associates X(T ) with movement and kinetic energy, then
2π|GT ′(f)2|df can be seen as the energy contribution of components with
frequencies within the (arbitrarily small) interval [f ; f + df ]. Regarding
the truncation, because with T ′ → ∞ also the energy goes to infinity,
one defines the power, π|GT ′(f)2|/T ′. Because the previous formulas in
this section apply to a time series rather than a stochastic process, one
uses the expectation operator to define

h(f) = lim
T ′→∞

{
E

[
2π

∣∣GT ′(f)2
∣∣ /

T ′ ]} . (5.5)
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5.1 Spectrum 179

The function h(f) is called one-sided non-normalized power spectral den-
sity function of the process X(T ), often denoted just as (non-normalized)
spectrum. It is the average (over all realizations) of the contribution to
the total power from components in X(T ) with frequencies within the
interval [f ; f + df ]. h(f) is defined for f ≥ 0 and integrates to S2. A
closely related function is

g(f) = h(f)
/
S2, (5.6)

the one-sided normalized power spectral density function, which inte-
grates to unity. A two-sided version of the spectrum, symmetric about
f = 0, is also used (Bendat and Piersol 1986).

The functions h(f) and g(f) are the Fourier transforms of the auto-
covariance and autocorrelation functions, R(τ) and ρ(τ), respectively,
provided they exist (Priestley 1981: Section 4.8 therein):

h(f) = π−1

∞∫
−∞

R(τ)e−2πifτdτ, (5.7)

g(f) = π−1

∞∫
−∞

ρ(τ)e−2πifτdτ. (5.8)

Herein,

R(τ) = E [X(T ) ·X(T + τ)] , (5.9)
ρ(τ) = R(τ) /R(0) (5.10)

and the symbol τ is used to denote a lag in continuous time. The caveat
refers to the fact that not all processes X(T ) have a spectral representa-
tion; however, the existence of the Fourier transform of the autocovari-
ance function R(τ) of X(T ) is a sufficient condition.

Turning to the discrete-time version of the climate process, X(i), we
assume also here absent trend, absent outliers and constant variability
and find

X(i) = S ·Xnoise(i). (5.11)

The spectral theory is in this case similar to the continuous-time case
(Priestley 1981: Section 4.8.3 therein), except that the frequency range
is now restricted in both directions and the discrete Fourier transform is
invoked to calculate the power spectral density functions. For example,
with even time spacing, d(i) = d > 0,

g(f) = (d/π)
∞∑

l=−∞
ρ(l)e−2πifldl, 0 ≤ f ≤ 1/(2d). (5.12)
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180 5 Spectral Analysis

Herein, l denotes a lag in discrete time. The frequency fNy = (2d)−1 is
denoted as Nyquist frequency; it sets the upper frequency bound.

5.1.1 Example: AR(1) process, discrete time
Consider the discrete-time AR(1) process (Section 2.1.1) with an au-

tocorrelation parameter a on an evenly spaced timescale, d(i) = d > 0,
with n = ∞ points. Then (Priestley 1981: Section 4.10 therein),

g(f) = 2d(1− a2)
/[

1− 2a cos(2πfd) + a2
]
, 0 ≤ f ≤ 1/(2d).

(5.13)
Plots of the AR(1) spectrum (Fig. 5.1) show higher power at lower fre-
quencies for a > 0; such a spectrum is, hence, called “red.”

0.0 0.1 0.2 0.3 0.4 0.5
Frequency, f

0.0

2.0

4.0

6.0Spectrum,
g(f )

a = 0.2

a = 0.5

Figure 5.1. Spectrum of the AR(1) process (Eq. 5.13). Two parameter settings are
shown; d = 1 and fNy = 0.5.

5.1.2 Example: AR(2) process, discrete time
Consider the discrete-time AR(2) process (Section 2.2) with param-

eters a1 and a2 on an evenly spaced timescale with d > 0 and n = ∞.
Then (Priestley 1981: Section 4.10 therein),

g(f) = 2d(1 + a2)(1− a2)−1
[
(1− a2)2 − a2

1

] [
(1 + a2)2 (5.14)

+a2
1 − 2a1(1− a2) cos(2πfd)− 4a2 cos(2πfd)2

]−1
,

with 0 ≤ f ≤ 1/(2d). Plots of the AR(2) spectrum (Fig. 5.2) reveal that
besides redness such spectra may exhibit quasi-cyclical behaviour (Eq.
2.15).
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Figure 5.2. Spectrum of the AR(2) process (Eq. 5.14). Two parameter settings are
shown; d = 1 and fNy = 0.5.

5.1.3 Physical meaning
The importance of the power spectral density functions h(f) and g(f)

lies in the possibility of decomposing a process into contributions from
different frequency intervals. That allows to separate short-term from
long-term variations and also to distinguish between cyclical forcing
mechanisms of the climate system and broad-band resonances. This
means that spectral analysis permits to learn about the physics of the
sampled climate system. As always when having instead of a per-
fect knowledge only a handful of data contaminated with measurement
and, perhaps, proxy errors, the task is to estimate, namely the spec-
trum. The following sections explain methods to infer h(f) or g(f) from
{t(i), x(i)}n

i=1.
We expect the climate spectrum either as continuous (Fig. 5.3b), re-

flecting a random process, or as a mixture of continuous and line com-
ponents (Fig. 5.3c), the latter representing a deterministic, periodic in-
fluence. Note that estimating a spectrum is estimating a function from
a finite data set. This means we can expect more difficulties and a
higher susceptibility to the validness of made assumptions than for eas-
ier tasks, where only few parameters have to estimated, such as in linear
regression.

A word on the notation: The literature has developed a rich variety of
different notations (factors 2π, frequency versus angular velocity, etc.),
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Chapter 6

Extreme Value Time Series

Extreme value time series refer to the outlier component in the cli-
mate equation (Eq. 1.2). Quantifying the tail probability of the PDF
of a climate variable—the risk of climate extremes—is of high socioeco-
nomical relevance. In the context of climate change, it is important to
move from stationary to nonstationary (time-dependent) models: with
climate changes also risk changes may be associated.

Traditionally, extreme value data are evaluated in two forms: first,
block extremes such as annual maxima, and second, exceedances of a
high threshold. A stationary model of great flexibility for the first and
the second form is the Generalized Extreme Value distribution and the
generalized Pareto distribution, respectively. Classical estimation tech-
niques based on maximum likelihood exist for both distributions.

Nonstationary models can be constructed parametrically, by writing
the extreme value models with time-dependent parameters. Maximum
likelihood estimation may impose numerical difficulties here. The in-
homogeneous Poisson process constitutes an interesting nonparametric
model of the time-dependence of the occurrence of an extreme. Here,
bootstrap confidence bands can be constructed and hypothesis tests per-
formed to assess the significance of trends in climate risk. A recent
development is a hybrid, which estimates the time-dependence nonpara-
metrically and, conditional on the occurrence of an extreme, models the
extreme value parametrically.

6.1 Data types
We distinguish among several types of extreme value data. One guide

for doing so is the accuracy of Xout(i), the outlier or extreme component
in the climate equation (Eq. 1.2). Even data with a very low accuracy
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230 6 Extreme Value Time Series

can be analysed, for example, cases where only the time an extreme
occurred is known. A related guide comes from considering how the
extreme data were obtained. An example is outlier detection by imposing
a threshold (Section 4.3.3).

6.1.1 Event times
In the low-accuracy case it is just known about an event that it did

occur, that means, Xout(i) 6= 0. The time points of the events recorded
by a time series are{

Tout(j)
}m

j=1
=

{
T (i)

∣∣Xout(i) 6= 0
}n

i=1
. (6.1)

On the sample level, the set of time points inferred from analysing
{t(i), x(i)}n

i=1 is written as {tout(j)}m
j=1. The number of extreme events

is m; it is m ≤ n.
A second constraint imposed on Xout(i), besides being unequal to zero,

is independence. The observed extreme should have occurred because a
climate process generated it and not because there had previously been
another, interfering event.

6.1.1.1 Example: Elbe winter floods
The winter floods of the river Elbe (Fig. 1.1) were recorded with a

slightly higher accuracy (x′out(j) = 1, 2 or 3). For the documentary
period (up to 1850), independence of events was achieved by studying the
historical sources (Mudelsee et al. 2003). Consider the ice flood in 1784,
for which Weikinn (2000) gives 32 source texts that report about the
breaking ice cover in the last week of February, the rising water levels, the
considerable damages this and the moving ice floes caused and, finally,
the decreasing water levels in the first week of March 1784. Mudelsee
et al. (2003) considered this as one single event (tout(j) = 1784.167) and
not two (February, March).

The question after the flood risk, whether winter floods occur at a
constant rate or there exist instead changes, is analysed by means of
occurrence rate estimation (Section 6.3.2).

6.1.2 Peaks over threshold
If X(i) is known with higher accuracy, a threshold criterion may be

applied to detect extremes.{
Tout(j), X ′

out(j)
}m

j=1
=

{
T (i), X(i)

∣∣X(i) > u
}n

i=1
(6.2)

is a rule for detecting maxima with a constant threshold, u. The exten-
sion to detecting minima is straightforward.
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6.1 Data types 231

The peaks-over-threshold (POT) data can be analysed in two ways.
Occurrence rate estimation (Section 6.3.2) uses the sample {tout(j)}m

j=1
to infer trends in the occurrence of extremes. Fitting a generalized
Pareto distribution (Section 6.2.2) to {x′out(j)}

m
j=1 is helpful for studying

the risk of an event of pre-defined size, prob(X(i) > u + v) with v > 0.
In climatology it is also useful to consider a time-dependent threshold

to take into account effects of trends in mean, Xtrend(T ), and variability,
S(T ). To fulfill the assumption of mutual independence of the POT data,
imposing further criteria than passing the threshold may be necessary.

6.1.2.1 Example: volcanic peaks in the NGRIP sulfate
record (continued)

Outlier/extremes detection in the NGRIP sulfate record (Fig. 4.16)
employed a time-dependent threshold, Xtrend(i) + z · S(i), and robust
estimates of trend (“background”) and variability, to take into account
variable oceanic input. A second criterion was the absence of contem-
poraneous Ca and Na peaks to extract the extremes caused by volcanic
eruptions (Fig. 1.4). To satisfy the independence assumption, further
threshold exceedances closely neighboured in time were discarded (third
criterion). In general, the size of such a neighbourhood can be estimated
using persistence models (Chapter 2). Instead of taking {X ′

out(j)}
m
j=1

from {X(i)}n
i=1, one may also collect scaled extremes {X ′

out(j)}
m
j=1 from

{[X(i)−Xtrend(i)]/S(i)}n
i=1. Scaling is one form of taking nonstation-

arity into account (Section 6.3).

6.1.3 Block extremes
It may sometimes be that climate or weather data are in the form of

extremes over a certain time period. An example of such a block extreme
is the annual maximum,

X ′
out(j) = max

({
X(i)

}
T (i) within jth year of time series

)
, (6.3)

Tout(j) = jth year of time series. (6.4)

The block extremes X ′
out(j) are the input for fitting a Generalized Ex-

treme Value distribution (Section 6.2.1). The estimation result sheds
light on the risk at which an extreme of a pre-defined size and at a
pre-defined block length occurs.

Risk estimation (Section 6.2.1) assumes that an extreme is taken from
a block with a large number k (at least, say, 100) of independent ob-
servations. This can be done explicitly, by segmenting or “blocking” an
original series {X(i)}n

i=1. Alternatively, the blocking may have already
been done implicitly. An example is documentary data in form of max-
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232 6 Extreme Value Time Series

imum annual water stage in a river, where original daily observations
have not been preserved or have simply not been made. Another pos-
sibility, theoretically also conceivable, are proxy measurements with a
machine that records not the mean value (e.g., of a concentration) but
the extreme value. In any case, the independence assumption should be
approximately fulfilled if the block length (time units) is large compared
with max(τ,D′(i)) (Fig. 1.13). For practical applications, τ and D(i)
have to be estimated.

6.1.4 Remarks on data selection
The rules for selecting {X ′

out(j)}
m
j=1 from {X(i)}n

i=1 are not uniquely
determined. This allows the analyst to explore various climate system
properties regarding extremes.

One area is threshold selection in the POT approach. Besides allowing
time-dependence, the size can be adjusted. A high (low) threshold size
for maxima detection leads evidently to fewer (more) cases and, hence,
to more conservative (liberal) results but likely also to wider (narrower)
CIs. Furthermore, a too low threshold may lead to violations of the
conditions of convergence to an extreme value distribution. Data in
form of event times have implicitly also undergone a threshold selection.
The documentary data about Elbe floods, for example, were critically
screened (Mudelsee et al. 2003) whether there is enough evidence that
merits inclusion into the flood record or there had instead been just an
elevated water level noticed by a hypercritical observer.

For block extremes, the adjustable parameter is the block length. In
the case of original data X(i) with even spacing, this corresponds to
a fixed number, k, of X(i) values per block. In the case of uneven
spacing, besides leaving the block length constant, one may also fix k.
The connection to nonparametric regression and the smoothing problem
(Section 4.3) is evident.

Henceforth we omit for convenience the prime and write {Xout(j)}m
j=1

on the process and {xout(j)}m
j=1 on the sample level.

6.2 Stationary models
In stationary models, the distribution parameters and related quan-

tities, such as risk, do not change over time.

6.2.1 Generalized Extreme Value distribution
The Generalized Extreme Value (GEV) distribution is suitable for

analysing block extremes. Our treatment follows closely that of Coles
(2001b: Chapter 3 therein).
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6.2.1.1 Model
The GEV distribution function is given by

FGEV(xout) =

exp
{
−

[
1 + ξ (xout − µ) /σ

]−1/ξ
}

(ξ 6= 0),

exp
{
− exp

[
− (xout − µ) /σ

]}
(ξ = 0),

(6.5)

where 1 + ξ (xout − µ) /σ > 0, −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞.
The parameters µ and σ identify location and scale, respectively, while
the shape parameter, ξ, determines the tail behaviour of FGEV(xout).

The importance of the GEV distribution lies in the fact that it is
the limiting distribution of the block maximum (for k large). Under
mild conditions, nearly irrespective of what the common, but generally
unknown distributional shape of the individual variables X(i) is, the
distribution of Xout(j) approaches the GEV (Fig. 6.1). This is in essence
the extreme value analogue of the central limit theorem (Coles 2001b).

-3 -2 -1 0 1 2 3 4
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Figure 6.1. Distribution of the maximum of k independent standard normal vari-
ates. The plotted distribution functions, Fmax(x), are labelled with k. For k = 1,
the symmetric form of the standard normal distribution, FN(x) (Eq. 3.49), appears.
In general, Fmax(x) = [FN(x)]k. Letting k increase has three effects: the location
(average) is shifted to the right, the scale (standard deviation) is decreased and the
right-skewness (shape parameter) is increased. With increasing k, Fmax(x) approaches
FGEV(x). This is a theoretical example, with prescribed FN(x) and exactly determined
Fmax(x). In a practical setting, with distribution and parameters of the independent
variables unknown, Fmax(x) can still be approximated by FGEV(x).

6.2.1.2 Maximum likelihood estimation
Assume that the approximation is perfect and the block maxima

{xout(j)}m
j=1 do come from a GEV distribution (Eq. 6.5). Assume further

that ξ 6= 0. Adopting the maximum likelihood principle (Section 2.6,
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Bivariate Time Series
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Chapter 7

Correlation

The correlation measures how strong a coupling is between the noise
components of two processes, Xnoise(i) and Ynoise(i). Using a bivariate
time series sample, {t(i), x(i), y(i)}n

i=1, this measure allows to study the
relationship between two climate variables, each described by its own
climate equation (Eq. 1.2).

Pearson’s correlation coefficient (Section 7.1) estimates the degree of
the linear relationship. It is one of the most widely used statistical
quantities in all branches of the natural sciences. Spearman’s correla-
tion coefficient (Section 7.2) estimates the degree of the monotonic re-
lationship. Although clearly less often used, it offers robustness against
violations of the Gaussian assumption, as also the Monte Carlo experi-
ments (Section 7.3) show.

Explorative climate data analyses should strongly benefit from corre-
lation estimates that are supported by a CI and not only a P -value of a
test of the null hypothesis of no correlation. It is then possible to take
several pairs of variables and rank the associations. One finding may be,
for example, that global temperature changes are stronger associated to
variations of CO2 than to those of solar activity (background material).
The challenge of providing accurate CIs is met by pairwise bootstrap
resampling (MBB or ARB), which takes into account the serial depen-
dence structures of both climate processes.

A second, rarely mentioned challenge appears when the processes dif-
fer in their sampling times (Section 7.5). This book introduces two novel
estimators, denoted as binned and synchrony correlation, respectively.
These are able (and outperform interpolation) to recover correlation in-
formation under the conditions of (1) persistence in the system, which
is realistic for climate, and (2) not too large spacings of the time series.
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286 7 Correlation

7.1 Pearson’s correlation coefficient
Let us assume in this chapter, for simplicity of exposition, that the cli-

mate process, X(i), has a constant trend function at level µX , a constant
variability, SX , and no outlier component. In discrete time,

X(i) = Xtrend(i) + Xout(i) + S(i) ·Xnoise(i)
= µX + SX ·Xnoise(i).

(7.1)

Assume analogously for the second climate process, Y (i), which is on
the same time points, T (i), as the first climate process,

Y (i) = µY + SY · Ynoise(i). (7.2)

The correlation coefficient is then defined as

ρXY =
E [{X(i)− µX} · {Y (i)− µY }]

SX · SY
. (7.3)

The correlation measures the degree of the linear relationship between
the variables X and Y ; ρXY is between −1 (“anti-correlation”) and 1.

For convenience of presentation we introduce here the correlation op-
erator,

CORR [X(i), Y (i)] =
COV [X(i), Y (i)]

{VAR [X(i)] · VAR [Y (i)]}1/2
. (7.4)

The definition of the correlation coefficient is thus based on the assump-
tion of time-constancy of CORR [X(i), Y (i)] = ρXY .

Let {X(i), Y (i)}n
i=1 be a bivariate sample (process level). Pearson’s

(1896) estimator of ρXY is

rXY =
1
n

n∑
i=1

(
X(i)− X̄

Sn,X

)
·
(

Y (i)− Ȳ

Sn,Y

)
, (7.5)

where

X̄ =
n∑

i=1

X(i) /n (7.6)

and

Ȳ =
n∑

i=1

Y (i) /n (7.7)
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are the sample means and

Sn,X =

{
n∑

i=1

[
X(i)− X̄

]2 / n

}1/2

(7.8)

and

Sn,Y =

{
n∑

i=1

[
Y (i)− Ȳ

]2 / n

}1/2

(7.9)

are the sample standard deviations calculated with the denominator
n (instead of n − 1). On the sample level, given a bivariate sample
{x(i), y(i)}n

i=1, plug in those values for X(i) and Y (i) in Eqs. (7.5), (7.6),
(7.7), (7.8) and (7.9). The estimator rXY is called Pearson’s correlation
coefficient. Also rXY is between −1 and 1.

7.1.1 Remark: alternative correlation measures
It is of course possible to employ other estimators. For example, Sn−1

(Eq. 3.19) may replace Sn for estimating SX or SY , leading to an (unfor-
tunate) correlation estimator that can have values < −1 or > 1. Another
option may be to subtract the sample medians (Galton 1888) and not
the sample means (Eqs. 7.6 and 7.7). More complex examples arise when
time-dependent trend functions are subtracted or time-dependent vari-
ability functions used for normalization. Such cases may be relevant for
climate time series analysis. All those examples lead to other correlation
measures than ρXY and other correlation estimators than rXY . Their
properties and CI performance can in principle be studied in the same
manner with Monte Carlo methods. Here we focus on rXY , stationary
trends and variabilities. Another measure (Spearman’s) is analysed in
Section 7.2.

7.1.2 Classical confidence intervals,
non-persistent processes

Let X(i) and Y (i) both be a stochastic process without persistence
or “memory.” Let further X(i) and Y (i) both have a Gaussian distribu-
tional shape; their joint distribution is then denoted as bivariate normal
or binormal distribution (Section 7.1.3.1). The PDF of Pearson’s corre-
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lation coefficient is then (Fisher 1915):

f(rXY ) =

(
1− ρ2

XY

)(n−1)/2 (
1− r2

XY

)(n−4)/2

√
π Γ[(n− 1)/2] Γ[(n− 2)/2]

×
∞∑

j=0

{Γ[(n− 1 + j)/2]}2

j!
(2 ρXY rXY )j . (7.10)

Numerous discussions on, and much work in the implementation of,
this celebrated formula exist in statistical science. Hotelling (1953) gave
approximations for the moments of rXY . In particular,

biasrXY =
(
1− ρ2

XY

) [
−ρXY

2n
+

ρXY − 9ρ3
XY

8n2

+
ρXY + 42ρ3

XY − 75ρ5
XY

16n3
+O

(
n−4

)]
(7.11)

and

serXY =
(
1− ρ2

XY

) [
1

n1/2
+

11ρ2
XY

4n3/2

−
192ρ2

XY − 479ρ4
XY

32n5/2
+O

(
n−7/2

)]
. (7.12)

Regarding the focus of this chapter, CI construction, it is common
practice to employ Fisher’s (1921) transformation. The quantity

z = tanh−1 (rXY ) (7.13)

approaches with increasing n a normal distributional shape considerably
faster than rXY , particularly when ρXY 6= 0. Fisher’s z has for large n
the following properties (Rodriguez 1982):

E[z] ≈ tanh−1 (ρXY ) (7.14)

and

sez ≈ (n− 3)−1/2 . (7.15)

This leads to the approximate classical CI for rXY ,

CIrXY ,1−2α =
[
tanh [z + z(α) · sez] ; tanh [z − z(α) · sez]

]
, (7.16)
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where z(α) is the percentage point of the normal distribution (Sec-
tion 3.9).

If we keep the assumption of absence of persistence for processes X(i)
and Y (i), but drop the Gaussian assumption, less is known, and no
exact formula for the distribution of rXY has been found. One recipe
is then to work with higher-moment properties of the distributions and
approximate solutions (Section 7.6). The alternative recipe is to use still
the formulas for the Gaussian case (Eqs. 7.13, 7.14, 7.15 and 7.16) and
assume robustness of this method. Johnson et al. (1995: Chapter 32
therein) give an account of the bewildering diversity of opinions in the
research literature on the suitability of this approach.

7.1.3 Bivariate time series models
A bivariate model describes not only the distributional and persis-

tence properties of two processes, X(i) and Y (i), but also the corre-
lation between them. The bivariate white-noise model characterizes
persistence-free processes and serves to build bivariate autoregressive
and higher-order processes.

7.1.3.1 Bivariate white noise
The bivariate Gaussian white noise model is given by

X(i) = EX
N(0, 1)(i), i = 1, . . . , n,

Y (i) = EY
N(0, 1)(i), i = 1, . . . , n.

(7.17)

The Gaussian random processes EX
N(0, 1)(·) and EY

N(0, 1)(·) are indexed.
The correlation coefficient between them is denoted as ρE .

The moments of this special case of the bivariate Gaussian white noise
model are by definition

E [X(i)] = E [Y (i)] = 0, (7.18)

VAR [X(i)] = VAR [Y (i)] = 1 (7.19)

and

CORR [X(i), Y (i)] = ρXY = ρE . (7.20)

In the general case, X(i) has mean µX and variance S2
X , and Y (i) has

mean µY and variance S2
Y . The binormal PDF of X(i) and Y (i) (Sec-

tion 7.6) is uniquely determined by the means, variances and correlation.
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Chapter 8

Regression II

Regression serves in this chapter to relate two climate variables, X(i)
and Y (i). This is a standard tool for formulating a quantitative “climate
theory” based on equations. Owing to the complexity of the climate
system, such a theory can never be derived alone from the pure laws
of physics—it requires to establish empirical relations between observed
climate processes.

Since not only Y (i) but also X(i) are observed with error, the relation
has to be formulated as an errors-in-variables model, and the estimation
has to be carried out using adaptions of the OLS technique. This chapter
focuses on the linear model and studies three estimation techniques (de-
noted as OLSBC, WLSXY and Wald–Bartlett procedure). It presents a
novel bivariate resampling approach (pairwise-MBBres), which enhances
the coverage performance of bootstrap CIs for the estimated regression
parameters.

Monte Carlo simulations allow to assess the role of various aspects of
the estimation. First, prior knowledge about the size of the measurement
errors is indispensable to yield a consistent estimation. If this knowledge
is not exact, which is typical for a situation in the climatological practice,
it contributes to the estimation error of the slope (RMSE and CI length).
This contribution persists even when the data size goes to infinity; the
RMSE does then not approach zero. Second, autocorrelation has to be
taken into account to prevent estimation errors unrealistically small and
CIs too narrow.

This chapter studies two extensions of high relevance for climatological
applications: linear prediction and lagged regression.

Regression as a method to estimate the trend in the climate equation
(Eq. 1.2) is presented in Chapter 4.
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340 8 Regression II

8.1 Linear regression
To make a regression of the predictor variable, X, on the response

variable, Y , we re-apply the errors-in-variables model (Section 4.1.7),

Y (i) = β0 + β1 [X(i)− SX(i) ·Xnoise(i)] + SY (i) · Ynoise(i), (8.1)

i = 1, . . . , n. The variability of process X(i) and Y (i) is denoted as SX(i)
and SY (i), respectively; the noise component, Xnoise(i) and Ynoise(i), is
of assumed AR(1) type with persistence time τX and τY , respectively.
One task is to estimate the regression parameters, β0 and β1, given a
bivariate sample, {t(i), x(i), y(i)}n

i=1. Another, related task is to make a
prediction of an unknown Y for a given value of X.

The errors-in-variables model (Eq. 8.1) differs from the simple model
(Eq. 4.3) in its nonzero noise component of the predictor. Several es-
timators for the errors-in-variables model have been developed to deal
with this more complex situation.

8.1.1 Ordinary least-squares estimation
The simple OLS estimation minimizes the unweighted sum of squares,

SSQ(β0, β1) =
n∑

i=1

[y(i)− β0 − β1x(i)]2 . (8.2)

This yields the estimators

β̂0 =

[
n∑

i=1

y(i)− β̂1

n∑
i=1

x(i)

] /
n (8.3)

and

β̂1 =

{[
n∑

i=1

x(i)

] [
n∑

i=1

y(i)

] /
n−

n∑
i=1

x(i) y(i)

}

×


[

n∑
i=1

x(i)

]2 /
n−

n∑
i=1

x(i)2


−1

. (8.4)

Using OLS means ignoring heteroscedasticity, persistence and errors
in the predictor variable, X. However, heteroscedasticity and persistence
can successfully be taken into account by employing WLS and GLS
estimation, respectively. The success of ignoring errors in X depends on
how large these are relative to the spread of the “true” X values (Eq.
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4.34), which are given by Xtrue(i) = X(i)− SX(i) ·Xnoise(i). If SX(i) =
SX is constant and S2

X � VAR[Xtrue(i)], the estimation bias should be
negligible. If SX(i) is not constant, one may expect a similar condition
to the average of SX(i). The decisive quantity is VAR[Xtrue(i)], which
may be difficult to control for an experimenter prior to sampling the
process.

If Xnoise(i) and Ynoise(i) are independent, the estimator β̂1 is biased
downwards (Section 4.1.7) as E

(
β̂1

)
= κ · β1, where κ ≤ 1 is the atten-

uation factor or reliability ratio,

κ =
(
1 + S2

X /VAR [Xtrue(i)]
)−1

. (8.5)

The intuitive reason of the bias downwards is that “smearing” the “true”
predictor variable, Xtrue(i), leads to a situation where the “cheapest fit
solution” in terms of SSQ is a line that is horizontally tilted (Fig. 8.1).

8.1.1.1 Bias correction
Eq. (8.5) points to a bias-corrected slope estimation. Let SX(i) = SX

be constant and known, and let the variance of the “true” predictor
values be given by VAR[Xtrue(i)] = VAR[X(i)]− S2

X . This leads to

β̂1 = β̂1,OLS

/{
1− S2

X /VAR [X(i)]
}

, (8.6)

where β̂1,OLS is the simple OLS slope estimator (Eq. 8.4). We denote
this estimation method (Eq. 8.6) as ordinary least squares with bias
correction (OLSBC). The OLSBC intercept estimator equals the OLS
intercept estimator (Eq. 8.3). In practice (sample level), plug in x(i) for
X(i).

8.1.1.2 Prior knowledge about standard deviations
Assume homoscedastic noise components, SY (i) = SY and SX(i) =

SX , and denote their squared ratio as

λ = S2
Y

/
S2

X . (8.7)

Knowledge prior to the estimation about SX , SY or λ can increase the
estimation accuracy.

If SX is known, then OLSBC can be readily performed (Eq. 8.6). Such
prior knowledge may be acquired, for example, by repeating measure-
ments. Or there may exist theoretical information about the measuring
device and, hence, SX .

If SX is only known within bounds, OLSBC estimation can still be
applied. CI construction has then to take into account the limited prior

Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer, Dordrecht. *** This is from 
2nd proofs (July 2010), final version: September 2010. *** ISBN: 978-90-481-9481-0; URL: http://www.manfredmudelsee.com/book; full 
content available from http://www.springer.com/environment/global+change+-+climate+change/book/978-90-481-9481-0



342 8 Regression II

0 5 10 15x(i )

0

5

10

15

y(i )

0 5 10 15x(i )

0

5

10

15

y(i )

0 5 10 15x(i )

0

5

10

15

y(i )

a

b

c

Figure 8.1. Linear errors-in-variables regression model, OLS estimation. The
{y(i)}n

i=1 are identical in panels a–c; the data size is n = 18; and the {x(i)}n
i=1

are realizations of a predictor variable, X(i), with constant zero (a), small (b) and
large (c) noise components, SX(i) ·Xnoise(i). The true slope is β1 = 1.0 (a). The OLS

fits (solid lines) exhibit slope estimates that are unbiased (a β̂1 = 1.0) or biased (b

β̂1 = 0.92; c β̂1 = 0.55).
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Outlook
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Chapter 9

Future Directions

What changes may bring the future to climate time series analy-
sis? First we outline (Sections 9.1, 9.2 and 9.3) more short-term objec-
tives of “normal science” (Kuhn 1970), extensions of previous material
(Chapters 1, 2, 3, 4, 5, 6, 7 and 8). Then we take a chance (Sections 9.4
and 9.5) and look on paradigm changes in climate data analysis that
may be effected by virtue of strongly increased computing power (and
storage capacity). Whether this technological achievement comes in the
form of grid computing (Allen 1999; Allen et al. 2000; Stainforth et al.
2007) or quantum computing (Nielsen and Chuang 2000; DiCarlo et al.
2009; Lanyon et al. 2009)—the assumption here is the availability of ma-
chines that are faster by a factor of ten to the power of, say, twelve, by
a mid-term period of, say, less than a few decades.

9.1 Timescale modelling
Climate time series consist not only of measured values of a climate

variable, but also of observed time values. Often the latter are not evenly
spaced and also influenced by dating uncertainties. Conventional time
series analysis largely ignored uneven and uncertain timescales, climate
time series analysis has to take them into account.

The process that generated the times, {tX(i)} for univariate and also
{tY (j)} for bivariate series, depends on the climate archive. We have
studied linear and piecewise linear processes for speleothem or sedimen-
tary archives (Section 4.1.7) and nonparametric models for ice cores (Sec-
tion 8.6.1). Such types of models are the basis for including uncertain
timescales in the error determination by means of bootstrap resampling
({t∗X(i)} and also {t∗Y (j)}). In bivariate and higher dimensional estima-
tion problems, also the joint distributions of the timescale processes are
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384 9 Future Directions

important. See the example of the Vostok ice core (Section 8.6.1) with
the coupled timescales for the ice and the gas.

Climate archive modelling should be enhanced in the future to provide
accurate descriptions of uncertain timescales. Archive models should ev-
idently include the physics of the accumulation of the archive. One may
even think of physiological models describing the performance of humans
in layer counting of regular sequences such as varves (Table 1.3). A sec-
ond ingredient of climate archive modelling are statistical constraints,
for example, a strictly monotonically increasing age–depth curve in a
speleothem archive or an absolutely dated fixpoint in a marine sedi-
ment core. An exemplary paper (Parrenin et al. 2007) of climate archive
modelling studies the accumulation and flow in an ice sheet, into which
a core is drilled. The Bayesian approach may be suitable for combining
the inputs from physics and statistical constraints (Buck and Millard
2004).

9.2 Novel estimation problems

Chapters 2, 3, 4, 5 and 6 presented stochastic processes and estima-
tion algorithms for inferring the fundamental properties of univariate
climate processes in the climate equation (Eq. 1.2): trend, variability,
persistence, spectrum and extremes. Chapters 7 and 8 studied bivariate
processes: correlation and the regression relation between two univari-
ate processes. We believe to have covered with these chapters the vast
majority of application fields for the climate sciences.

However, in science there is always room for asking more questions,
that means in a quantitative approach, for attempting to estimate dif-
ferent climate parameters in the uni- or bivariate setting.

An obvious example of such a novel estimation problem is SSA, men-
tioned in the background material of Chapter 1. This decomposition
method has been formulated so far only for evenly spaced, discrete time
series. Interpolation to equidistance is obsolete because it biases the ob-
jectives of the decomposition (estimates of trend, variability, etc.). SSA
formulations applicable to unevenly spaced records should therefore be
developed.

Other novel estimation approaches are expected to come from the
array of nonlinear dynamical systems theory (Section 1.6). This field
has a focus more on application data from controlled measurements or
computer experiments and less on unevenly spaced, short paleoclimatic
time series. A breakthrough, also with respect to SSA, may come from
techniques of reconstructing the phase space at irregular points.
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9.3 Higher dimensions
Climate is a complex, high-dimensional system, comprising many vari-

ables. Therefore it makes sense to study not only univariate processes
(Part II), X, or bivariate processes (Part III), X and Y , but also trivari-
ate processes, X and Y and Z, and so forth. A simple estimation prob-
lem for such high-dimensional processes is the multivariate regression,
mentioned occasionally in previous chapters (Sections 4.2 and 8.7),

Y (i) = θ0 + θ1X(i) + θ2Z(i) + · · ·+ SY (i) · Ynoise(i). (9.1)

The higher number of dimensions may also result from describing the
climate evolution in the spatial domain (e.g., X is temperature in the
northern, Y in the southern hemisphere). There is a variety of high-
dimensional, spatial estimation problems: multivariate regression, PCA
and many more (von Storch and Zwiers 1999: Part V therein).

As regards the bootstrap method, there is no principle obstacle to
perform resampling in higher dimensions. An important point is that
resampling the marginal distributions, of X and Y and Z separately, is
not sufficient; the joint distribution of (X, Y, Z), including dependences
among variables, has to be resampled to preserve the original covari-
ance structure. This requires adaptions of the block bootstrap (MBB)
approach. A further point, which may considerably exacerbate the esti-
mation as well as the bootstrap implementation, is unequal observation
times. The sets

{tX(i)}nX
i=1 , {tY (j)}nY

j=1 , {tZ(k)}nZ
k=1 (9.2)

need not be identical. Depending on the estimation problem and the
properties of the joint climate data generating process (e.g., persistence
times), the algorithm for determining θ0, θ1, θ2, and so forth, has to be
adapted. This is a step into new territory. An example from the bi-
variate setting is the “synchrony correlation coefficient” (Section 7.5.2).
A final point of complication from the move into higher dimensions is
dependence among the timescale variables. Since this type of complica-
tion can occur already in two-dimensional problems (Section 8.6.1), we
expect it in higher dimensions as well. This challenge must be met by
means of timescale modelling (Section 9.1).

9.4 Climate models
Computer models render the climate system in the form of mathemat-

ical equations. The currently most sophisticated types, AOGCMs (Fig.
1.9), require the most powerful computers. Nevertheless, the rendered
spatial and temporal scales are bounded by finite resolutions and finite
domain sizes. Also the number of simulated climate processes is limited.
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Draper D (1995) Assessment and propagation of model uncertainty (with discussion).
Journal of the Royal Statistical Society, Series B 57(1): 45–97.

Draper NR, Smith H (1981) Applied Regression Analysis. Second edition. Wiley, New
York, 709 pp.

Draschba S, Pätzold J, Wefer G (2000) North Atlantic climate variability since AD
1350 recorded in δ18O and skeletal density of Bermuda corals. International Journal
of Earth Sciences 88(4): 733–741.

Drysdale RN, Zanchetta G, Hellstrom JC, Fallick AE, Zhao J, Isola I, Bruschi G
(2004) Palaeoclimatic implications of the growth history and stable isotope (δ18O
and δ13C) geochemistry of a middle to late Pleistocene stalagmite from central-
western Italy. Earth and Planetary Science Letters 227(3–4): 215–229.

Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression
I. Biometrika 37(3–4): 409–428.

Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression
II. Biometrika 38(1–2): 159–178.

Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer, Dordrecht. *** This is from 
2nd proofs (July 2010), final version: September 2010. *** ISBN: 978-90-481-9481-0; URL: http://www.manfredmudelsee.com/book; full 
content available from http://www.springer.com/environment/global+change+-+climate+change/book/978-90-481-9481-0



References 409

Durbin J, Watson GS (1971) Testing for serial correlation in least squares regression
III. Biometrika 58(1): 1–19.

Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000)
Climate extremes: Observations, modeling, and impacts. Science 289(5487): 2068–
2074.

Eastoe EF, Tawn JA (2009) Modelling non-stationary extremes with application to
surface level ozone. Applied Statistics 58(1): 25–45.

Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation
when the data are serially correlated. Journal of Climate 10(9): 2147–2153.

Eckmann J-P, Ruelle D (1992) Fundamental limitations for estimating dimensions
and Lyapunov exponents in dynamical systems. Physica D 56(2–3): 185–187.

Edgington ES (1986) Randomization tests. In: Kotz S, Johnson NL, Read CB (Eds)
Encyclopedia of statistical sciences, volume 7. Wiley, New York, pp 530–538.

Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phe-
nology and trophic mismatch. Nature 430(7002): 881–884.

Efron B (1979) Bootstrap methods: Another look at the jackknife. The Annals of
Statistics 7(1): 1–26.

Efron B (1982) The Jackknife, the Bootstrap and Other Resampling Plans. SIAM,
Philadelphia, PA, 92 pp.

Efron B (1987) Better bootstrap confidence intervals. Journal of the American Sta-
tistical Association 82(397): 171–185.

Efron B (1994) Missing data, imputation, and the bootstrap (with discussion). Jour-
nal of the American Statistical Association 89(426): 463–479.

Efron B, Hinkley DV (1978) Assessing the accuracy of the maximum likelihood esti-
mator: Observed versus expected Fisher information (with discussion). Biometrika
65(3): 457–487.

Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence in-
tervals, and other measures of statistical accuracy (with discussion). Statistical
Science 1(1): 54–77.

Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. Chapman and Hall,
London, 436 pp.

Einsele G, Ricken W, Seilacher A (Eds) (1991) Cycles and Events in Stratigraphy.
Springer, Berlin, 955 pp.

Einstein A (1949) Autobiographisches—Autobiographical notes. In: Schilpp PA (Ed)
Albert Einstein: Philosopher–Scientist. Library of Living Philosophers, Evanston,
IL, pp 1–95.

El-Aroui M-A, Diebolt J (2002) On the use of the peaks over thresholds method for
estimating out-of-sample quantiles. Computational Statistics and Data Analysis
39(4): 453–475.

Ellis TMR, Philips IR, Lahey TM (1994) Fortran 90 Programming. Addison-Wesley,
Harlow, 825 pp.

Elsner JB (2006) Evidence in support of the climate change–Atlantic
hurricane hypothesis. Geophysical Research Letters 33(16): L16705.
[doi:10.1029/2006GL026869]

Elsner JB, Kara AB (1999) Hurricanes of the North Atlantic: Climate and Society.
Oxford University Press, New York, 488 pp.

Elsner JB, Kara AB, Owens MA (1999) Fluctuations in North Atlantic hurricane
frequency. Journal of Climate 12(2): 427–437.

Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest
tropical cyclones. Nature 455(7208): 92–95.

Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer, Dordrecht. *** This is from 
2nd proofs (July 2010), final version: September 2010. *** ISBN: 978-90-481-9481-0; URL: http://www.manfredmudelsee.com/book; full 
content available from http://www.springer.com/environment/global+change+-+climate+change/book/978-90-481-9481-0



410 References

Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30
years. Nature 436(7051): 686–688.

Emanuel KA (1987) The dependence of hurricane intensity on climate. Nature
326(6112): 483–485.

Emanuel KA (1999) Thermodynamic control of hurricane intensity. Nature 401(6754):
665–669.
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Fischer H (1997) Räumliche Variabilität in Eiskernzeitreihen Nordostgrönlands. Ph.D.
Dissertation. University of Heidelberg, Heidelberg, 188 pp.

Fischer K (1907) Die Sommerhochwasser der Oder von 1813 bis 1903. Jahrbuch für
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Polonaise de Mathématique 6: 93–116.
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Kürschner WM, van der Burgh J, Visscher H, Dilcher DL (1996) Oak leaves as biosen-
sors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations.
Marine Micropaleontology 27(1–4): 299–312.

Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Applied Linear Statistical Models.
Fifth edition. McGraw-Hill/Irwin, Boston, 1396 pp.

Kwon J, Min K, Bickel PJ, Renne PR (2002) Statistical methods for jointly estimating
the decay constant of 40K and the age of a dating standard. Mathematical Geology
34(4): 457–474.

Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer, Dordrecht. *** This is from 
2nd proofs (July 2010), final version: September 2010. *** ISBN: 978-90-481-9481-0; URL: http://www.manfredmudelsee.com/book; full 
content available from http://www.springer.com/environment/global+change+-+climate+change/book/978-90-481-9481-0



References 427
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Rohling EJ, Pälike H (2005) Centennial-scale climate cooling with a sudden cold event
around 8,200 years ago. Nature 434(7036): 975–979.
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and finance. In: Finkenstädt B, Rootzén H (Eds) Extreme Values in Finance,
Telecommunications, and the Environment. Chapman and Hall, Boca Raton, FL,
pp 1–78.

Smith RL, Shively TS (1994) A Point Process Approach to Modeling Trends in Tro-
pospheric Ozone Based on Exceedances of a High Threshold. National Institute of
Statistical Sciences, Research Triangle Park, NC, 20 pp. [Technical Report Number
16]

Mudelsee M (2010) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer, Dordrecht. *** This is from 
2nd proofs (July 2010), final version: September 2010. *** ISBN: 978-90-481-9481-0; URL: http://www.manfredmudelsee.com/book; full 
content available from http://www.springer.com/environment/global+change+-+climate+change/book/978-90-481-9481-0



446 References

Smith RL, Shively TS (1995) Point process approach to modeling trends in tropo-
spheric ozone based on exceedances of a high threshold. Atmospheric Environment
29(23): 3489–3499.

Smith RL, Tawn JA, Coles SG (1997) Markov chain models for threshold exceedances.
Biometrika 84(2): 249–268.

Smith RL, Tebaldi C, Nychka D, Mearns LO (2009) Bayesian modeling of uncertainty
in ensembles of climate models. Journal of the American Statistical Association
104(485): 97–116.

Sokal A, Bricmont J (1998) Intellectual Impostures. Profile Books, London, 274 pp.
Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) Unusual activity of

the Sun during recent decades compared to the previous 11,000 years. Nature
431(7012): 1084–1087.

Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL,
Chen Z (Eds) (2007) Climate Change 2007: The Physical Science Basis. Contribu-
tion of Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press, Cambridge, 996 pp.

Solow AR (1987) Testing for climate change: An application of the two-phase regres-
sion model. Journal of Climate and Applied Meteorology 26(10): 1401–1405.

Solow AR (1991) An exploratory analysis of the occurrence of explosive volcanism in
the northern hemisphere, 1851–1985. Journal of the American Statistical Associa-
tion 86(413): 49–54.

Spall JC (Ed) (1988) Bayesian Analysis of Time Series and Dynamic Models. Marcel
Dekker, New York, 536 pp.

Spearman C (1904) The proof and measurement of association between two things.
American Journal of Psychology 15(1): 72–101.

Spearman C (1906) ‘Footrule’ for measuring correlation. British Journal of Psychology
2(1): 89–108.
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Joos F, Köhler P, Matsumoto K, Monnin E, Mudelsee M, Paillard D, Shackleton N
(2005) Modeling past atmospheric CO2: Results of a challenge. Eos, Transactions
of the American Geophysical Union 86(38): 341, 345.
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Paluš M, 335
Pankratz A, 376
Paparoditis E, 82, 103, 223
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Spötl C, 172
Squire PT, 380
Stainforth DA, 383
Stanley SM, 27
Stattegger K, 62
Stedinger JR, 62
Steele JH, 26
Steffensen JP, 164
Stensrud DJ, 386
Stephenson DB, 62
Stern DI, 60, 335–336
Stine RA, 83, 224–225
Storey JD, 106
Stott PA, 16
Strupczewski WG, 274
Stuart A, 169
Stuiver M, 20, 195
Subba Rao T, 225
Suess HE, 170, 195
Sura P, 46
Svensmark H, 332
Sweldens W, 218

T
Tachikawa K, 164
Talkner P, 48
Tate RF, 327
Taylor RE, 28
Tebaldi C, 388
Tetzlaff G, 20
Theiler J, 104, 223
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